S.Y. M.Sc. Part-II (Physics) Third Semester Old MSC231010 - Elective Physics Paper-VIII Numerical Methods & Programming

P. Pages : 3 Time : Three Hours			* 1 8 0 7 * GUG/W/18/2 Max. Marks	GUG/W/18/2313 Max. Marks : 80	
	Note	es: 1. 2.	All questions are compulsory. All questions carry equal marks.		
1.	Eith	er			
	a)	Using N $x^2 + y =$	ewton's Raphson's method, solve the following system of non linear equation = 11	10	
		$y^2 + x =$	= 07		
	b)	What is if y = (0	meant by absolute and relative error? .31x + 2.73) / (x + 0.35)	6	
		Where the $x = 0.5$	he coefficients are rounded off. Find the absolute and relative error in y when ± 0.1 .		
			OR		
	e)	Find the method.	quadratic factor of the polynomial given by $x^3 - 2x^2 + x - 2 = 0$ using Bairstow's	6	
	f)	Apply R i) x +	tamanujan's method, obtain the first eight convergents of following equations - $x^3 = 1$ and ii) $x + x^2 + x^3 = 1$	10	
2.	Eith	Either			
	a)	Using G 2x + y +	aussian elimination method, solve the system of equations $z = 10$	8	
		3x + 2y	+3z = 18		
		x + 4 y +	9z = 16		
	b)	Solve th 83x –11	e system of equations using Jacobi's method upto three significant figure $y - 4z = 95$	8	
		7x + 52y	y + 13z = 104		
		3x + 8y	+29z = 71		
			OR		

f) Solve the following system of equation by LU decomposition method 2x + 3y + z = 9

x + 2y + 3z = 63x + y + 2z = 8

3. Either

- a) Describe the following basic steps involved in finite element method as
 - i) Discretization of the region
 - ii) Variational formulation over the element e for the two point boundary value problem defined by

 $\frac{d}{dx} \left[a(x) \frac{dy}{dx} \right] = -f(x), \qquad 0 < x < 1$ with the boundary conditions, y(0) = 0 $\left[a(x) \frac{dy}{dx} \right]_{x=1} = 0$

b) Obtain the Euler's modified formula.

OR

- e) Use the Runge-Kutta fourth order method to fix the value of y when x = 1 given that y = 1 6 when x = 0 and that $\frac{dy}{dx} = \frac{y - x}{y + x}$
- f) Write a short notes on
 - i) Crank-Nicolson formula and
 - ii) ADI method.
- **4.** Either
 - a) What are strings? Give any four standard Library string functions and explain them with suitable example.
 - b) Write short note on registers and static variables.

OR

- e) Explain
 - a) Automatic storage class
 - b) Register storage class
 - c) Static storage class
 - d) External storage class.
- f) What are arrays? How are they useful in programmes? Explain the different types of array 8 in brief.

2

8

10

8

8

- **5.** Answer all the following.
 - a) Describe the Graeffe's root squaring method for the numerical solution of polynomial 4 equation.

4

4

4

- b) Evaluate the determinant
 - i) With the help of second row and
 - ii) With the help of third column
 - 1 0 4
 - 3 5 -1
 - 0 1 2
- c) Explain the following basic terminology of differential equation.
 - i) Order of differential equation.
 - ii) Degree of differential equation.
- d) In function, what is mean by call by value and call by reference. Explain with suitable examples.
