F.Y.M.SC.(Physics) Second Semester OLD 0142 - Statistical Physics Paper – III

P. Pages: 2 Time : Three Hours		2 ree Hours $* 1737$	GUG/W/18/2240 Max. Marks : 80	
 1.		Either		
	a)	State and prove Liouville's theorem.		8
	b)	What do you mean by partition function? Express Helmholtz free energy a terms of partition function.	and entropy in	8
		OR		
	e)	State fundamental assumptions of statistical mechanics which has enables macroscopic properties of equilibrium state of an assembly of particles.	us to deduce	8
	f)	Explain fluctuation in Thermodynamic quantities.		8
2.		Either		
	a)	Explain Bose- Einstein condensation. How does it differ from ordinary vap condensation.	pour	8
	b)	Discuss the specific heat of liquid He_2^4 by comparing with that of ideal bo	se system.	8
		OR		
	e)	Explain the symmetry of wave functions for the system of indistinguishable	le particles.	8
	f)	Explain gas degeneracy.		8
3.		Either		
	a)	Derive FD distribution formula and show that the specific heat of a strong Fermi – Dirac gas is directly proportional to the absolute temperature.	ly degenerate	8
	b)	Discuss the developments in the theory of specific heat. Prove that specific proportional to cube of temperature for solid at low temperature.	c heat is directly	8
		OR		
	e)	Discuss the deviation of ideal fermi gas from the perfect gas in terms of we degeneracy.	eak and strong	8
	f)	Obtain virial equation of state in terms of cluster integrals.		8

4.		Either	
	a)	Discuss the Ising model for second order phase transition.	8
	b)	Explain Langevin's theory of Brownian motion of particles.	8
		OR	
	e)	Explain in detail scaling hypothesis.	8
	f)	Explain the terms.i) Critical indices.ii) Order parameter.	8
5.		Attempt all the following questions.	
		a) Compare canonical, Grand – Canonical & microcanonical ensembles.	4
		b) Obtain an expression for Bose Temperature of ideal Bose system.	4
		c) Calculate the Fermi Energy for sodium assuming one free electron per atom. Given : density of sodium = 0.97 g/cm ³ Atomic weight of sodium = 23 $h = 6.62 \times 10^{-34}$ Js. $N = Avogadro Number = 6 \times 10^{26} \frac{atoms}{kg.mole}$	4
		d) Distinguish between first order & second order phase transition. **********************************	4