M.Sc. (Physics) First Semester Old 0134 - Classical Mechanics Paper-II

P. Pages : 2 Time : Three Hours		2 aree H	Iours GUG/	GUG/W/18/2191 Max. Marks : 80	
1.	a)	Eith Exp	her plain D'Alembert principle.	4	
	b)	Star	rting from D' Alemberts principle derive langrage's equation for conservative system	stem. 8	
	c)	Fin	d the equation of motion for simple pendulum by using Lagrange's equation.	4	
			OR		
	e)	i)	What are constraints? Discuss briefly the classification of constraints.	4	
		ii)	 Write down the equation of constraints in Cartesian coordinates. 1) Rigid body 2) Simple pendulum 	4	
	f)	Dec	duce Hamilton's Principle from D' Alembert's principle?	8	
2.		Either			
	a)	i)	Define generalized momentum and cyclic coordinates.	2	
		ii)	Show that the generalized momentum corresponding to a cyclic coordinate rem constant.	nain 2	
		iii)	Prove the law of conservation of momentum for a system of particles.	4	
	b)	i)	What is Hamiltonian function? Explain its physical significance. Prove that Hamiltonian of a conservative system is equal to the total energy of the system	5 1.	
		ii)	Describe the Hamiltonian equations for an ideal spring mass arrangement.	3	
		OR			
	e)	i)	Prove that poison braket of two dynamical variables is invariant under infinites canonical transformation.	simal 4	
		ii)	And show that the transformation defined by $q = \sqrt{2P} \sin Q$	4	
			$p = \sqrt{2p} \cos Q$ is canonical.		
	f)	Use	e Hamilton – Jacobi's theory to solve Kepler's problem.	8	
3.		Eitł	her		
	a)	i)	Show that in an elliptical orbit of a planet around the sun, the major axis solely depends on the total energy.	3	

1

5

8

4

ii) Further prove that the periodic time is an elliptical orbit is $\frac{3}{2}$

$$T = 2\pi a \sqrt[3/2]{\sqrt{G(M+m)}}$$

Where a is the semi major axis and M the mass of the sun and m that of the planet.

b) Use Hamilton's equation to find the differential equation for planetary motion and prove **8** that the areal velocity is constant.

OR

- e) Define scattering cross-section and find the expression of Rutherford's scattering crosssection. 8
- f) Show that for any repulsive central force a formal solution for the angle of scattering can be expressed as

$$\phi = \pi + \int_{0}^{u_0} \frac{p \, d u}{\sqrt{1 - \frac{V}{E} - p^2 u^2}}$$

Where V is the potential every u = 1/r and u_0 corresponds to the turning point of the orbit.

- 4. Either
 - a) Define Angular momentum of a rigid body and find its expression in terms of moments of Inertia and product of Inertia.
 - b) Show that the kinetic energy of a rotating rigid body in a coordinate system of principal axes is given by $T = y_2 (I_1 W_1^2 + I_2 W_2^2 + I_3 W_3^2)$

OR

- e) What are Euler's Angles? Find the matrix of transformation and its inverse matrix.
- f) Consider a rectangular cube of density ρ and mass M and side a for origin O at one corner and axes along of the edges of the cube, determine the inertial tensor. 8
- Answer all the following.
 - a) What type of difficulties arise due to the constraints in the solution of mechanical 4 problems and how these are removed.
 - b) Prove that Poisson bracket of two constant of motion is itself a constant of motion. 4
 - c) Explain and prove total energy of a particle under the action of central force is constant.
 - d) Using conditions of principal moments of Inertia define spherical top, symmetric top.
 4 and asymmetric top.

5.