M.Sc.(Physics) First Semester (Old)

0133 - Mathematical Physics Paper - I

P. Pages: 2
Time: Three Hours

Max. Marks: 80

1. EITHER.

- a) Show that $r^n \xrightarrow{r}$ is an irrotational vector for any of n, but is solenoidal if n = -3.
- b) Define divergence of a vector and give its physical meaning. 6

OR

- e) Define curl of a vector. If v is a vector of field then find curl of v in terms of curvilinear Co-ordinates.
- f) If $\overline{v} = \frac{x \, \vec{i} + y \, \vec{j} + 2 \vec{k}}{\sqrt{x^2 + y^2 + z^2}}$, find the

value of div \overrightarrow{v} and curl of \overrightarrow{v}

EITHER.

- **2.** a) State and prove quotient law of tensor.
 - b) Define Christoffel symbols of first and second kind and prove that.

 8

 8

8

$$\frac{\partial g^{pq}}{\partial x^m} = -g^{pn} \begin{Bmatrix} q \\ mn \end{Bmatrix} -g^{qn} \begin{Bmatrix} p \\ mn \end{Bmatrix}.$$

OR

- e) Show that every tensor of second rank can be resolved into symmetric and antisymmetric part.
- f) Using tensor analysis prove 6
 - i) $\operatorname{grad}(\phi \psi) = \phi \operatorname{grad} \psi + \psi \operatorname{grad} \phi$.
 - ii) $\operatorname{div}(\phi F) = \phi \operatorname{div} F + \operatorname{Fgrad} \phi$.
- **3.** EITHER.
 - a) State and prove Cayley-Hamilton theorem. 8
 - b) Find the eigen values and eigen vector of the matrix. 8

$$A = \begin{bmatrix} b & a & a \\ a & b & a \\ a & a & b \end{bmatrix}$$

e) What are eigen values and eigen vectors? Find the eigen values of the matrix A.

8

- $A = \begin{bmatrix} 1 & -6 & -4 \\ 0 & 4 & 2 \\ 0 & -6 & -3 \end{bmatrix}.$
- f) Show that all eigen values of a Hermitian matrix are real.

8

- **4.** EITHER.
 - a) Find Fourier sine transform of

8

$$f(x) = \frac{e^{-ax}}{x}.$$

b) Find the inverse Laplace transform of

8

$$\frac{s^2 - 1}{\left(s^2 + 1\right)^2}$$

OR

e) Prove that for Bessel's function.

 $J_{n}(x)J_{-n}(x) = (-1)^{n} J_{n}(x).$

8

f) Find the Fourier series of the function of period 2π defined as

8

$$f(x) = x \text{ if } -\frac{\pi}{2} < x < \frac{\pi}{2}$$
$$= \pi - x \text{ if } \frac{\pi}{2} < x < \frac{3\pi}{2}.$$

- **5.** Answer all the followings.
 - a) Explain gradient of the scalar function.

4

b) Define covariant and contravariant tensors of rank 2.

c) Find the inverse of the linear transformation.

/

$$u = x + 2y - z$$

$$v = -2x - y + 3z$$

$$w = x - 4z$$

Prove that

4

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[x^n \cdot J_n(x) \right]^2 = x^n J_{n-1}(x).$$

d)