M.Sc. - I (Mathematics) First Semester Old 0167 - Optional - Fuzzy Mathematics-I Paper-VII

P. P. Tim	ages : e : Thr	2 ee Hours	₩₩₩₩₩₩₩₩₩ ★ 1 6 8 3 ★	GUG/W/18/21 Max. Marks : 1	85 100
	Note	s: 1. 2.	Solve all the questions. All questions carry equal marks.		
			UNIT - I		
1.	a)	Show that	at a fuzzy set A on R is convex iff $A(\lambda x_1 + (1-\lambda)x_2) \ge \min [A(x_1 + \lambda)x_2) \ge \min [A(x_1 + \lambda)x_2) \ge \max [A(x_1 + \lambda)x_2] \ge \max [A(x_1 + \lambda)x_2) \ge \max [A(x_1 + \lambda)x_2] \ge \max [A(x$), $A(x_2)$].	10
	b)	Explain t	he four features that make the new paradigm superior to the classic	cal paradigm.	10
			OR		
	c)	Let A & $ \mathbf{A} + \mathbf{B} $	B be fuzzy sets defined on a universal set X. Prove that $ A \cup B + A \cap B $.		10
	d)	Let A, B i) $A \subseteq A \subseteq A$ ii) $A = A = A$	$\in \mathcal{I}(X)$ then for all $\alpha \in [0, 1]$ show that : $\Box B \text{ iff } \alpha A \subseteq \alpha B$ $\Box B \text{ iff } \alpha + A \subseteq \alpha + B$ $= B \text{ iff } \alpha A = \alpha B$ $= B \text{ iff } \alpha^+ A = \alpha^+ B$		10
			UNIT - II		
2.	a)	Let $* \in \{$ A * B de	+, -, ·, 1} & A, B denote continuous fuzzy numbers then prove the fined by $(A * B) (z) = \sup \min [A(x), B(y)]$ is continuous fuzzy n z = x * y	at fuzzy set umber.	10
	b)	Explain t	the fuzzy equation $A + X = B$.		10
			OR		
	c)	Prove that	at $0 \in A - A \& 1 \notin A / A$ where A is closed interval. Also find [-4	, 6]/[1, 2].	10
	d)	Explain s	shortly the lattice of fuzzy numbers.		10
			UNIT - III		
3.	a)	Show that $R_{T(i)} =$	It for any fuzzy relation R on X^2 the fuzzy relation $\bigcup_{n=1}^{\infty} R^{(n)}$		10

10 b) Prove that, if R be a reflexive relation on X^2 where $|X| = n \ge 2$ then $R_{T(i)} = R^{(n-1)}$.

OR

- Show that for any $a, a_j, b, d \in [0, 1]$ where j takes values from an index set J, operation 10 c) w_i has the properties.
 - $i(a, b) \le d$ iff $w_i(a, d) \ge b$ i)
 - $w_i(i(a, b), d) = w_i(a, w_i(b, d))$ ii)
- d) Explain shortly the fuzzy morphisms.

UNIT - IV

- 4. If $S(Q, R) \neq \phi$ for P oⁱ Q = R then show that $\hat{P} = (Q \circ^{w_i} R^{-1})^{-1}$ is the greatest member 10 a) of S(Q, R).
 - If $S(Q, R) \neq \phi$ then show that : 10 b) $\hat{P} = R \text{ o}^{w_i} \overline{Q}^1$ is the greatest member of S(Q, R) i)
 - $\tilde{Q} = \overline{P}^1 o^i R$ is the smallest member of S(P, R). ii)

OR

	c)	Explain the use of the neural networks.	10
	d)	Describe the solution method in brief.	10
5.	a)	Which are the 3 basic methods by which sets can be defined within a given universal set X	5
	b)	Explain shortly the linguistic variables.	5
	c)	State the 5 properties satisfying by partial ordering.	5
	d)	Explain the fuzzy relation equations based on sup-i compositions.	5

10