B.E. Electronics & Telecommunication / Communication Engineering / Electronics Engineering Eighth Semester

EC / EN8052 - Elective-II : Micro Electro Mechanical Systems

 Notes : 1. All questions carry marks as indicated. 2. Due credit will be given to neatness and adequate dimensions. 3. Assume suitable data wherever necessary. 4. Illustrate your answers wherever necessary with the help of neat sketches. a) Explain the various sensor characteristics that has to be considered while developing a sensor. b) Compare the various actuation methods used for MEMS devices and also give the general criteria when considering actuators designs and selection. OR 2. a) Discuss about the frequently used microfabrication processes. b) A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1mm long and 100 - µm in diameter. Find the stress and strain in the longitudinal direction of the rod. c) Give the methods for analyzing the deflection of beams under simple loading conditions. 3. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>b</i>, width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. 	P. Pages : 2 Time : Three Hours			Irs * 1 5 5 1 *	GUG/W/18/2033 Max. Marks : 8	
 sensor. b) Compare the various actuation methods used for MEMS devices and also give the general criteria when considering actuators designs and selection. OR 2. a) Discuss about the frequently used microfabrication processes. b) A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1mm long and 100 - µm in diameter. Find the stress and strain in the longitudinal direction of the rod. c) Give the methods for analyzing the deflection of beams under simple loading conditions. 3. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 		Note	2 3	Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary.	sketches.	
 criteria when considering actuators designs and selection. OR a) Discuss about the frequently used microfabrication processes. b) A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1mm long and 100 - µm in diameter. Find the stress and strain in the longitudinal direction of the rod. c) Give the methods for analyzing the deflection of beams under simple loading conditions. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 	1.	a)	-		developing a	8
 a) Discuss about the frequently used microfabrication processes. b) A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1mm long and 100 - µm in diameter. Find the stress and strain in the longitudinal direction of the rod. c) Give the methods for analyzing the deflection of beams under simple loading conditions. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 		b)			give the general	8
 b) A cylindrical silicon rod is pulled on both ends with a force of 10 mN. The rod is 1mm long and 100 - μm in diameter. Find the stress and strain in the longitudinal direction of the rod. c) Give the methods for analyzing the deflection of beams under simple loading conditions. 3. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. 0R 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 				OR		
 long and 100 - µm in diameter. Find the stress and strain in the longitudinal direction of the rod. c) Give the methods for analyzing the deflection of beams under simple loading conditions. 3. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 	2.	a)	Disc	ss about the frequently used microfabrication processes.		8
 3. a) Explain pull in effect of parallel plate actuators. b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (ℓ), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 		b)	long	and 100 - μ m in diameter. Find the stress and strain in the longitudir		2
 b) Discuss the procedures for calculating the equilibrium displacement under static (DC) and quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 		c)	Give	the methods for analyzing the deflection of beams under simple load	ding conditions.	6
 quasistatic (low frequency) bias conditions of electrostatic actuator under bias. OR 4. a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 	3.	a)	Expl	in pull in effect of parallel plate actuators.		8
 a) Why must thermal couples involve two different materials ? Explain. b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (ℓ), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 		b)				8
 b) Write a short note on thermal resistors. 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (ℓ), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 				OR		
 5. a) A fixed-free cantilever is made of single crystal silicon. The longitudinal axis of the cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (ℓ), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 	4.	a)	Why	must thermal couples involve two different materials ? Explain.		8
 cantilever points in the [100] crystal orientation. The resistor is made of by diffusion doping, with a longitudinal gauge factor of 50. The length (<i>l</i>), width (w), and thickness (t) of the cantilever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 µN is applied at the end of the cantilever in the longitudinal direction, what would be the percentage change of resistance. b) Explain the method to analyze the stress and strain distribution in a mechanical element 		b)	Writ	a short note on thermal resistors.		8
	5.	a)	canti with canti the e	ever points in the [100] crystal orientation. The resistor is made of by a longitudinal gauge factor of 50. The length (ℓ), width (w), and the ever are 200 µm, 20 µm and 5 µm, respectively. If a force F = 100 and of the cantilever in the longitudinal direction, what would be the p	diffusion doping, hickness (t) of the) μN is applied at	8
		b)	-	•	anical element	8
OR				OR		

6.	a)	Give the mathematical description of Piegoelectric effect.	
	b)	Explain a compact model for calculating the curvature of bending in a cantilever piezoelectric actuator.	8
7.	a)	Explain the process of low-pressure chemical vapour deposition with diagrams.	8
	b)	Give the material selection criteria for two layer process.	8
		OR	
8.	a)	Give the practical factors affecting the yield of MEMS.	8
	b)	Write a short note on stiction and anti stiction methods. Suggest ways to reduce stiction.	8
9.	a)	Explain the role of SU-8 polymer for MEMS applications.	8
	b)	Write a short note on Parylene as a polymer for MEMS devices.	8
		OR	
10.	a)	Explain the working of multimodal polymer based tactile sensor.	8
	b)	Draw the schematic diagram of a LCP polymer flow sensor and explain the working.	8
