B.E. Electrical (Electronics & Power) Engineering Eighth Semester EP801 - Computer Applications In Power System

P. Pages : 3 Time : Three Hours

GUG/W/18/2009

Max. Marks: 80

- Notes : 1. Answer **five** questions as per internal choice.
 - 2. Assume suitable data wherever necessary.
 - 3. Illustrate your answers wherever necessary with the help of neat sketches.
 - 4. Use of non-programmable electronic calculator is permitted.
- 1. a) Bus incidence matrix for a power system is given below -

Element	ode	1	2	3
	1	0	-1	0
	2	0	0	-1
A =	3	-1	1	0
	4	-1	0	0
	5	0	-1	1
	6	0	-1	1

Select 1, 2, 3 as tree.

- i) Form basic cutset incidence matrix.
- ii) Form basic loop incidence matrix
- iii) Show that $A_b \cdot k^t = U_b$
- b) Derive expression for loop impedance matrix using singular transformation.

OR

- 2. a) Oriented graph of a power system is shown in fig. 2 (a). Select 1, 2, 3 as tree and show that 12
 - i) $A_b \cdot k^t = U_b$
 - ii) $B_{\ell} \cdot A_b = A_{\ell}$
 - iii) $C_b = B_\ell^t$

10

6

- b)Explain representation of power system element in impedance and admittance form.4a)Show that the symmetrical component transformation matrix is unitary.4
 - b) The information of interconnection of the elements of a power system is described in Table 3 (b). Neglect line charging admittance and assume that there is no mutual coupling.

Select node 0 as reference and elements 1, 2, 3 as tree. Form bus impedance matrix (Z_{bus}) using algorithm method.

Element	Connected		Self impedance
No.	From bus	To bus	(pu)
1	0	2	0.40
2	2	3	0.25
3	1	2	0.50
4	0	3	0.25
5	0	1	0.20

[ab]	le	3	(b)
L UU.	···	\mathcal{I}	(0)

OR

8

- **4.** a) Explain the algorithm for formation of three phase bus impedance matrix. Consider that there is no mutual coupling.
 - b) The bus impedance matrix (Z_{bus}) for a three bus power system is given below -

$$Z_{\text{bus}} = \begin{array}{c} 2 & 3 \\ 0 & 0 \\ 3 & 0 \\ 0.044 & 0.099 \end{array}$$

Modify this Z_{bus} matrix, if a new element with self impedance of 0.4 pu is added between bus \bigcirc and bus \bigcirc

- 5. a) State the advantages and disadvantages of Newton-Raphson method used for load flow 4 analysis.
 - b) With the help of flow chart and necessary equations explain Gauss-Seidel method used for **12** load flow analysis (including P-V buses)

OR

6. a) Derive the elements of Jacobian matrix used in Newton-Raphson method of load flow analysis.
b) Explain acceleration of convergence in Gauss-Seidel method of load flow analysis.
4
c) Explain, how the buses are classified in load flow analysis ?
4
7. a) What is the need of short circuit studies.

3.

- b) For a line-to-line fault at bus 'p' in a power system, derive expression for
 - i) Fault current
 - ii) Voltage at faulted bus
 - iii) Voltage at healthy buses

OR

8.	a)	State the assumptions made in short circuit analysis of large power system.		
	b)	Find three phase fault impedance matrix (Z_F^{abc}) in case of three phase to ground fault. Consider that fault impedance (in each phase) is Z_f and the ground impedance is Z_g . Also transform Z_F^{abc} in symmetrical component form.	10	
9.	a)	With the help of flow chart and necessary equations, explain Runge-Kutta fourth order method for transient stability analysis.	12	
	b)	State the assumptions made in transient stability analysis. OR	4	

- 10. a)Derive swing equation for a machine connected to infinite bus through transmission4a)network.
 - b) A single machine connected to infinite bus has H = 3.0, $x_d' = 0.25$ pu and line reactance = 12 0.1 pu. Initially bus voltage (generator bus) is 1.4 pu and generator was delivering 75 MW. At t = 0 second three phase short circuit occurred at generator bus. Find variation of rotor angle with respect to time up to t = 0.15 second, taking time step of 0.05 second. Given that base MVA = 100 and infinite bus voltage is 1<0 pu. Use Euler's modified method.
