B.E. Mining Engineering Seven Semester MN701 - Ground Control in Mines

P. Pages: 2		GUG/W/18/1842
Time : Three Hours		Max. Marks : 80

- Notes : 1. Assume suitable data wherever necessary.
 - 2. Illustrate your answers wherever necessary with the help of neat sketches.
 - 3. Marks are indicated to the right.
- 1. Discuss Bieniawski's engineering classification scheme for rock masses. Also briefly 11+5 mention various modifications suggested to it to make it more suitable to mining =16 applications.

OR

- 2. Discuss CMRI-ISM Engineering classification scheme for rock masses stating how it is used to estimate rock load in galleries and at junctions.
- Using Kirsch's solution compute radial, tangential and shear stresses induced around a single circular opening having a radius of 5m at (i) mid height points in the sides and (ii) top and bottom points at a distance of 10m from the centre of the opening. Assume K=0. Plot the results. Also state assumptions made by Kirsch.

OR

- With respect to the following information available in respect of a Bord & Pillar working, 16 calculate the average axial pillar pressure and pillar strength using Salamon & Munro's formula and CMRI formula and comment on the stability of the pillar:
 - <u>1</u>. Depth of working:50m
 - 2. Uni-axial compressive strength of coal: 10MPa.
 - <u>3</u>. Thickness of coal seam and the overlying strata & starting from ground surface are follows:

Sl. No.	Strata	Thickness (m)	Density (te/m^3)
1	Black Cotton Soil	15	1.9
2.	Sandstone	20	2.3
3.	Shaly Sandstone	10	2.2
4.	Shale	5	2.1
5.	Coal Seam	8m	1.4

- <u>4</u>. Plan size of pillars in coal: $20^{\text{m}} \times 25 \text{m}(\text{c to c})$
- 5. Width of gallery = 4.5m Assume suitable values for data not given.
- 5. What is rock burst? Why and under which circumstances rock bursts take place? Discuss 3+4+ the factors governing process of rock masses to Crusting. 9=16

- 6. Discuss the concepts of abutment pressure, main roof and immediate roof. What are the various ways of monitor and predict rock bursts? =16
- 7. Define subsidence, sub-surface subsidence, surface-subsidence, pothole, angle of Greek 12+4 and super-critical width of excavation. Discuss how surface subsidence could the =16 minimised using harmonic mining.

OR

- 8. Discuss various measures to effect prevention and control of subsidence caused due to 16 underground excavation activities.
- 9. Write short notes on **any three**.

a)	Photoelasticity: Principle and Applications.			
b) Strain Gauges and Strain Rossettes.	5		
c)) Geophones.	5		
d)) Tell tales.	5		
OR				

10. What and how does pit slope impact the economics of mining operations? Discuss, briefly, 4+12 measures you would suggest to monitor and protect slopes in opencast mining systems. =16
