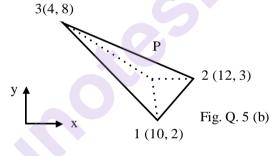
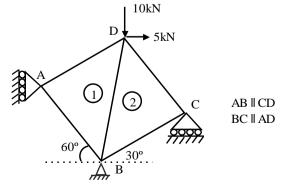

B.E. Mechanical Engineering Seven Semester ME7012 - Elective-I : Finite Element Methods


P. Pages : Time : Th	$\begin{array}{c} 3 \\ \text{hree Hours} \\ \end{array}$	GUG/W/18/1841 Max. Marks : 80
Not	 All questions carry equal marks. Answer Question 1 or 2, 3 or 4, 5 or 6, and 7 or 8. Illustrate your answers wherever necessary with the Use of non-programmable calculator is allowed. 	e help of neat sketches.
1. a)	Explain with a suitable example i) Singular and non singular Matrix ii) Inverse of Ma	8 atrix
b)	Find using Gauss-Jordan Method, solution of following set of equations. x + y + z = 9; 2x - 3y + 4z = 13;	8
	3x + 4y + 5z = 40	
c)	Describe shape functions for Linear bar element.	4
2. a)	OR Use Rayleigh - Ritz method to determine stresses and display shown in fig. Q 2a. Length of bar = L = 1000 mm, C/s area of bar = A = 100 mm ² P = 10 kN. P = 10 kN.	cements in the elastic bar 12
b)	Fig. Q. 2 (a) Explain i) Steps in FEM. ii) Plane strain a	and plane stress condition.
3.	steel 4m 2m 2m C D A RIGID BODY	Aluminium
	$E_{steel} = 200 \text{GPa} \qquad P = 20 \text{ kN} (\text{upwards})$ $E_{aluminum} = 70 \text{GPa}$ $A_{steel} = 100 \text{ mm}^2$	

 $A_{al} = 150 \text{ mm}^2$

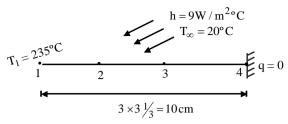
4. a) For the truss shown in fig Q. 4 find stress in each member and support Reactions. Take $A = 100 \text{ mm}^2$ and E = 200 GPa for all members.


b) What do you understand by Isoparametric representation.
a) Describe various terms in stiffness matrix of CST element.
b) For a CST element shown in fig Q 5 b, find x & y coordinates of P if N₁ = 0.2 and N₂ = 0.45 at P Hence find Areas of Δ 1P3, Δ 1P2& Δ 3P2. Also find area of CST element 3 (4,8)

c) In fig Q 5 b, if $q_1 = 0.001$; $q_2 = 0.003$ $q_3 = -0.002$; $q_4 = 0.005$; $q_5 = 0.03$; $q_6 = -0.007$. Find strain in the element

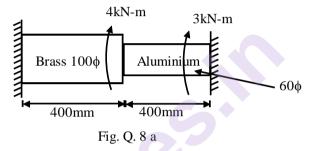
OR

6. For a plate of thickness 20 mm described in fig Q. 6b. Take AB = BC = CD = AD = 30 mm; E = 200 GPa $\gamma = 0.3$. Find strain & stress in each of the element & support Reactions.



5.

20


6

7. A metallic fin with thermal conductivity $K = 360 \text{ W/m} \circ \text{C}$, 0.1cm thick, and 10 cm long, 20 extends from a plane wall whose temperature is 235°C. Determine the temperature distribution and amount of heat transferred from the fin to the air at 20°C, with $h = 9 \text{ W/m}^2$ °C. Take width of fin to be 1 m.

OR

8. a) Determine the angle of twist in degrees at the steps, the maximum shear stress in each section and the reactions at the walls of a stepped circular bar shown in fig Q10. $E_{aluminum} = 80$ GPa, $E_{brass} = 105$ GPa.

- b) Write short notes on **any two.**
 - i) Applications of FEM.
 - ii) 2 D elements in FEM.
 - iii) Discretization
 - iv) Quadratic Bar Element.

8