B.E. Electronics Engineering / Electronics & Telecommunication / Communication Engineering Seven Semester (CBS)

EN / ET / EC-701 : UHF and Microwave

	ages : ie : Th	2 ee Hours $* 1 3 9 3 *$	GUG/W/18/1782 Max. Marks : 80	
	Note	 All questions carry marks as indicated. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. Illustrate your answers wherever necessary with the help of neat s 	ketches.	
1.	a)	a) A two cavity Klystron has the following parameters Beam Voltage $V_o = 20 \text{ kV}$ Beam current $I_o = 2A$ operating frequency $f = 8 \text{ GHz}$ Beam coupling coefficient $\beta_i = \beta_o = 1$ dc electron beam current density $\rho_o = 10^{-6} \text{ c/m}^2$ signal voltage $V_1 = 10V$ (rms) shunt resistance of the cavity Rsh =10k Ω Total shunt resistance including load R = 30k Ω Calculate a) The plasma frequency b) The reduced plasma freq for R = 0.5 c) The induced current in the output cavity. d) The induced voltage in the output power e) The output power delivered to the load. f) The power gain g) The electronic efficiency		
	b)	What are the limitation of conventional tuber at microwave frequencies. OR	6	
2.		A two cavity Klystron amplifier has the following parameters. $V_o = 1000V$ $R_o = 40k\Omega$ $I_o = 25 \text{ mA}$ $f = 3 \text{ GHz}$ Gap spacing in either cavity $d = 1 \text{ mm}$ spacing between the two cavities $L = 4 \text{ cm}$ effective shunt impedance, excluding beam loading $\text{Rsh} = 30k\Omega$ a) Find the input gap voltage to give maximum voltage V_2 . b) Find the voltage gain, neglecting the beam loading in the output cavit c) Find the efficiency of the amplifier, neglecting beam loading. d) Calculate the beam loading conductance and show that neglecting it we the preceding calculations.		
3.	a)	Explain the operation of TWT with us physical construction and electrode	arrangement. 8	
	b)	Derive an expression for the cut-off magnetic flux density with reference to cavity magnetron.	o a cylindrical 8	

OR

8 4. A traveling wave tube has following characteristics a) Beam voltage $V_0 = 2 kV$ Beam current $I_0 = 4 \text{ mA}$ Frequency f = 8 GHzCircuit length N = 50Characteristic impedance $Z_0 = 20\Omega$ Determine : Gain parameter C ii) The power gain in decibels. i) What are slow wave structure. Explain how a helical TWT actives amplification. 8 b) 5. What is scattering matrices. Explain the properties of scattering (s) matrix. 8 a) Prove that scattering (s) matrix of H - plane Tee is 8 b) $\mathbf{S} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$ OR Explain the operation of directional coupler with its scattering (s) matrix. 8 6. a) What are the application of magic Tee explain any one in details. 8 b) 7. What is Gyrator. Explain its operation with neat diagram. 8 a) b) Explain the operation of four port circulator with its S matrix. 8 OR Explain the operation of Farday rotation isolator. 8 8. a) b) Determine the [s] of a 3-port circulator given insertion loss of 0.5 dB, isolation of 20 dB 8 and VSWR of 2. 9. What is microstrip lines. Explain losses in microstrip lines. 8 a) Explain the self balancing bridge technique for measuring medium powers in the range of b) 8 10 mW to 10 W. OR 10. Explain any two methods of measuring impedance of a terminating load in a microwave 8 a) system. What is parametric amplifier. Discuss the amplification mechanism of a parametric b) 8 amplifier by use of its equivalent circuit.
