B.E. Mechanical Engineering Sixth Semester ME604 - Thermal Engineering

P. Pages : 2 Time : Three Hours			* 1 3 4 9 *	GUG/W/18/1715 Max. Marks : 80
	Note	es: 1. 2. 3. 4. 5. 6. 7.	All questions carry equal marks. Due credit will be given to neatness and adequate dimensions Assume suitable data wherever necessary. Diagrams and Chemical equation should be given wherever needs Retain the construction lines. Illustrate your answers wherever necessary with help of neat Use of slide rule, Logarithmic tables, Steam tables, Mollier's instruments Thermodynamic tables for moist air, Psychromet Refrigeration charts is permitted.	necessary. sketches. chart, Drawing
1.	a)	Explain	Velox boiler with neat sketch.	٤
	b)	Explain	bubbling type fluidised bed combustions.	8
			OR	
2.	a)	entering a) De b) Ca c) Eq	r generates 8 kg of steam per kg of fuel burnt a pressure of 12 g at 80°C. The boiler is 75% efficient and its factor of evaporate gree of superheat and temperature of steam generated. lorific value of fuel in kJ/kg. uivalent evaporation in kg of steam/kg of fuel. ke specific heat of superheated steam a 2.3kJ/kgK.	
	b)	What ar	re boiler accessories? Explain any two in detail.	٤
3.	a)	discharg having a	te the throat and exit diameters of a convergent divergent ge 820kg of steam/hr at a pressure of 8 bar superheated to 2 a pressure of 1.5 bar. The friction loss in the divergent portion s 0.15 of the isentropic enthalpy drop.	20°C into a chamber
	b)	With the	e help of h-s diagram explain the effect of irreversibilities on r	nozzle efficiency.
			OR	
4.	a)	Compar	re actual indicator diagram with hypothetical indicator diagram	n of a steam engine.
	b)	Explain	working principle of steam turbine. Also classify them.	8
5.		-	n reaction turbine running at 400 rpm with 50% reaction deve The exit angle of the blade is 20° and the steam velocity is 1.4	

1

6.	a)	Explain nozzle control governing of steam turbine in detail.	8			
	b)	Elaborate various losses in steam turbine.				
7.	a)	What are elements of a condensing plant? Explain low-level counter flow jet condenser.				
	b)	Explain a) Dalton's law of partial pressure.	8			
		b) Vacuum efficiency.				
		OR				
8.	a)	What are cooling towers? Explain mechanical draft cooling tower.	8			
	b)	Explain the working of a shell and tube type of surface condenser.				
9.		Calculate the power required to compress $25m^3$ /min atmospheric air at 101.3kPa, 20°C to a pressure ratio of 7 in an LP cylinder Air is then cooled at constant pressure to 25°C in an intercooler, before entering HP cylinder, where air is again compressed to a pressure ratio of 6. Assume polytropic compression with n = 1.3 and R = 0.287 kJ/kgK.				
		OR				
10.	a)	Explain working of single acting air compressor with clearance.	8			
	b)	Obtain an expression for indicated work for a single acting compressor without clearance.	8			