B.E. Information Technology Fifth Semester IT505 - Design Analysis of Algorithms

P. P Tim	Pages : ne : Thr	2GUG/W/18/164ree Hours $* 1 2 8 9 *$ Max. Marks : 8	GUG/W/18/1640 Max. Marks : 80	
	Note	 Same answer book must be used for all questions. All questions carry equal marks. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. Illustrate your answers wherever necessary with the help of neat sketches. 		
1.	a)	Describe Analysis of Algorithms. Discuss Time and space complexity.	8	
	b)	Solve the recurrence $T(n) = 2T(n / 2) + n$ by substitution method.	8	
		OR		
2.	a)	Solve the following recurrence using master method : i) $T(n) = 4T (n/3) + n^2$ ii) $T(n) = 8T(n/2) + 3n^3$.	8	
	b)	Solve the following recursion $T(n) = T\left(\frac{n}{2}\right) + T\left(\frac{n}{4}\right) + T\left(\frac{n}{8}\right) + n$ by recursion tree method.	8	
3.	a)	Consider following list of elements as 50, 40, 20, 70, 15, 35, 20, 60 sort the above list using merge sort.	8	
	b)	What do you mean by analysis of an algorithm ? Write on algorithm for Binary search and analyse it.	8	
		OR		
4.	a)	Let $n = 4(P_1, P_2, P_3, P_4) = (100, 10, 15, 27)$ and $(d_1, d_2, d_3, d_4) = (2, 1, 2, 1)$ where P_1 are profits on processes or job and di are dead line of completion find the optimal schedule.	8	
	b)	Consider 5 items along their respective weights and values $I = (I_1, I_2, I_3, I_4, I_5)$ W = (5, 10, 20, 30, 40) V = (30, 20, 100, 90, 160) The capacity of knapsack W = 60. Find the solution to the knapsack problem.	8	
5.	a)	Write short note on travelling salesman problem.	8	
	b)	Write any algorithm to find all-pair shortest path. Derive its complexity.	8	

1

6.	a)	What is dynamic programming ? Explain your answer with an example.	8
	b)	Determine the LCS of (1, 0, 0, 1, 0, 1, 0, 1) and (0, 1, 0, 1, 1, 0, 1, 1, 0)	8
7.	a)	Discuss Backtracking technique. Given three types of items with the following respective weights and values $T = (T_1, T_2, T_3) W_i = (1, 4, 5) V_i = (4, 5, 6)$.	8
	b)	Write short note on the following :i) Graph coloringii) Hamiltonian cycle.	8
		OR	
8.	a)	Give a set = $(1, 3, 4, 5)$ and X = 8, we have to find subset sum using back tracking approach.	8
	b)	 Find all the possible solutions for the - i) 4 x 4 chess board 4 Queens problem ii) 8 x 8 chess board, 8 Queens problem 	8
9.	a)	Explain Np hard and Np complete problems and also define the polynomial time problems and write a procedure to solve Np - problems.	8
	b)	Describe the Max-Clique problem with example.	8
		OR	
10.	a)	Discuss deterministic and non-deterministic computations with example.	8
	b)	Write a short note on SAT - Independent and Set - 3VC.	8
