B.E. Electronics & Telecommunication / Communication Engineering / Electronics Engineering Fifth Semester

EN/ET/EC 501 - Linear Electronic Circuits / Linear Integrated Circuits

P. Pages : 2 Time : Three Hours			GUG/W/18/1 * 1 2 7 5 * Max. Marks	
	Note		 Questions carry marks as indicated. Assume suitable data wherever necessary. 	
1.	a)	Dra	w and explain the block diagram of operational amplifier.	8
	b)	Exp	plain Dominant - pole frequency compensation technique for op-amp.	8
			OR	
2.	a)	Dra	w and explain current mirror circuit used as constant current source.	8
	b)		rive the equation for differential gain (A_{DM}) using hybrid π model remains amplifier when differential input signal is applied.	for transistorized 8
3.	a)	Exp	plain following op-amp parameters.	8
		i)	Input offset voltage. ii) CMRR	
		iii)	Slew rate. iv) Input bias current.	
	b)	to a	sign a differentiator to differentiate an input signal that varies in frequebout 1KHz. If a sine wave of 1V peak at 1000Hz is applied to this diffunction input-output waveforms.	•
			OR	
4.	a)	Der	ive the output equation for integrator circuit.	8
	b)	i)	For non-inverting amplifier circuit if $R_F=12k$, $R_1=1k,\pm V=\pm 15$ output voltage for $V_{in}=250mV$ and $V_{in}=3V$.	V. Find the 4
		ii)	For inverting amplifier circuit if $R_F = 5k$, $R_1 = 1k, \pm V = \pm 15V$. Fin voltage for $V_{in} = 0.5V$ and $V_{in} = 7V$.	d the output 4
5.	a)	Dra	w and explain working of precision full wave rectifier circuit.	8
	b)		w and explain inverting Schmitt Trigger with neat circuit diagram. Alout waveforms and voltage transfer curve for it.	lso draw input 8

OR

- **6.** a) Draw and explain square wave generator using op-amp.
 - b) Draw and explain working of any negative voltage limiter circuit.

8

8

7. a) Draw circuit diagram of R-2R ladder DAC and write its output equation.

8

8

b) Design second order Butterworth low pass filter having upper cut-off frequency of 1kHz.

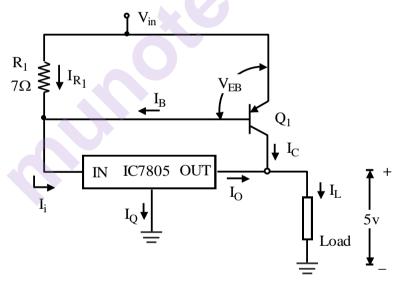
OR

- **8.** a) Draw circuit diagram of binary weighted DAC and write its output equation.
- 8

b) Explain wide Band reject filter using op-amp.

8

8


8

- **9.** a) Draw and explain Astable multivibrator operation using IC 555 with help of neat circuit diagram and waveforms.

b) Draw and explain frequency multiplier using PLL.

OR

10. a) If fig. shown, Let $V_{EB(ON)} = 1V$ and $\beta = 15$. Calculate the output current coming from 1C7805 and I_C coming from transistor Q_1 for loads 100Ω , 5Ω and 1Ω

b) Calculate output frequency f_0 , lock range Δf_L and capture range Δf_C of a IC565 PLL if $R_T=10k\Omega,\, C_T=0.01\mu F \text{ and } C=10\mu F.$
