B.E. Electrical (Electronics & Power) Engineering Fifth Semester EP504 - Electrical Power System-I

P. Pages : 2 Time : Three Hours			* 1 2 7 3 *	GUG/W/18/1619 Max. Marks : 80	
	Notes	s: 1. 2. 3. 4.	All questions carry equal marks. Assume suitable data wherever necessary. Illustrate your answers wherever necessary with the help of neat sk Use of non programmable calculator permitted.	etches.	
1.	a)	With nea standard	at diagram give the layout of modern power system structure, menti- voltages at each stages.	oning the	8
	b)	A single at 0.8 p.1 AB, BC and curre Assume	phase 400V ring distributor ABC is fed at 'A'. The loads at 'B' & 'C f. lagging and 15 Amp at 0.6 p.f. lagging respt. The impedance of th & CA are $(1 + j1)$, $(1 + j2)$ & $(1 + j2)$ respectively. Find the total cu ent in each section and voltage sat 'B' & C. voltage of 'A' as reference.	" are 20 Amp aree sections arrent at 'A'	8
			OR		
2.	a)	Explain configur	why for transmission purpose conductors are standard & use in bun ration generally used. Illustrate with neat diagram.	dle. Give few	6
	b)	What do	you mean by skin & proximity effect.		4
	c)	List out	various equipments used in substation. Give the brief description of	each.	6
3.	a)	Derive the	he formula for calculation of inductance 3ϕ transposed lines.		8
	b)	A 36 doi 2.5 m. T	uble circuit line has it's conductor at the vertices of regular hexagon he radius of each conductor is 2 cm. Find the capacitance of per pha	with sides of ase per km.	8
			OR		
4.	a)	Discuss composi	the concept of GMD and GMR. How it is used to find the inductance te conductor lines.	ce of the	8
	b)	Explain formula effect of	the effect of earth on the capacitance calculation of overhead line. If for capacitance of single phase solid conductor circuit by considering earth.	Derive the ng the	8
5.	a)	What are reactance	e the advantages of per unit system ? Derive the formula for determine for change of base value.	ining per unit	8

b) Develop the per unit reactance diagram for the power system shown in fig. 5 (b).

6

150.

- 6. a) Give the representation of 'nominal-A' circuit for medium length transmission line. Derive 8 generalized constant and develop phasor diagram.
 - b) A 200 km long three phase overhead line has a resistance of 48.7 ohm per phase line to neutral capacitance of 8.42 nf per km. Inductive reactance of $80.2\Omega/\text{ph}$. It supplies a load of 13.5 mw at a voltage of 88 KV and at a p.f. of 0.9 lag. using nominal 'T' circuit. Find the sending end voltage current regulation and power factor.

OR

- a) Starting from first principle deduce expression for ABCD constant for long line in terms 10 of it's parameters. Hences define propagation constant and characteristics impedance.
 - b) Explain Ferranti effect and derive the expression for voltage rise of an unloaded line.

OR

8.	a)	Write static flow equation & explain it characteristics.	8
	b)	Derive 'equivalent-A' circuit model in terms of long line equations.	8
9.	a)	What do you mean by string efficiency ? What is it's significance ? Explain the method of improvement of string efficiency.	8
	b)	A one km long 11 KV, 3ϕ , 3 core metal sheathed cable gave the following result in test of capacitance -	8
		i) Capacitance between two conductors joined to sheath and third conductor $0.65 \mu f$.	

- ii) Capacitance between all the three conductors joined together and sheath 0.75 μ f Find :
- a) Effective capacitance of each core to the neutral
- b) Charging current per phase
- c) Capacitance between any two conductors.

OR

a) What do you mean by grading of cables ? Explain capacitance grading in details.
b) A suspension string has 3 units. Each withstands a maximum peak voltage of 3 KV. The capacitance of each joint and metal work is 20% of the capacitance of each disc. Find

maximum line voltage for which the string can be used & string efficiency.
