
B.E. Electronics & Telecommunication / Communication Engineering / Electronics Engineering / Electrical (Electronics & Power) Engineering Fifth Semester ET502 / EN502 / EP503 - Signals and Systems

P. Pag Time			burs $* 1 2 7 2 *$	GUG/W/18/1618 Max. Marks : 80
	Notes		 All questions carry equal marks. Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. Diagrams and Chemical equation should be given wherever nece Illustrate your answers wherever necessary with the help of neat 	•
1.	a)	-	lain what do you understand by symmetric signals and antisymmetric amples must be given for symmetric and antisymmetric signals).	signals 8
	b)		l even and odd part of the signal $ = \left\{ 1, 2, 3, 2, 1, -1 \right\} $	8
			OR	
2.	a)	Find i) ii)	the Fourier transform of - x(t) = u(t) x(t) = sin (t)	8
		Exp i) ii) iii)	lain with an example what do you understand by - Linear and nonlinear system Causal and non causal system Stable and astable system	8
3.	a)	Wri	te properties of L.T.I. systems.	8
	b)	Finc	l linear convolution of the signals $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3\}$	2, 3, 4}. 8
			OR	
4.	a)		ermine the output $y(n)$ of a relaxed linear time-invariant system with in $y = a^n u(n)$, $ a < 1$ when input is a unit step sequence that is $x(n) = u(n)$	1 1

b)	Determine the particular solution of the difference equation				
	$y(n) = \frac{5}{6}y(n-1) - \frac{1}{6}y(n-2) + x(n)$				

b) Compute the Fourier transform of the following signals :

i)
$$x(n) = u(n) - u(n - 6)$$

ii) $x(n) = \left(\frac{1}{4}\right)^n u(n + 4)$
OR

- 6. Obtain circular convolution of $x_1(n) = \{2, 1, 2, 1\}$ and $x_2(n) = \{1, 2, 3, 4\}$ using DFT 16 and IDFT Technique.
- 7. a) Write mathematical expression for z transform and explain with an example what do you understand by Region of convergence (R.o.C.) of z-transform. Also write its properties.

b) Determine the z-transform of the signal
$$x(n) = -n a^n u(-n-1)$$
.
OR

8. a) Determine the causal signal x(n) if its z-transform is given by -

i)
$$X(z) = \frac{1+3z^{-1}}{1+3z^{-1}+2z^{-2}}$$
 ii) $X(z) = \frac{1}{1-z^{-1}+\frac{1}{2}z^{-2}}$

b) Obtain the solution of difference equation

$$y(n) = \frac{1}{2}y(n-1) + 2x(n)$$
 with initial conditions $y(0) = 1$ and $y(1) = 1$.

- 9. Determine the impulse response and step response of the causal system $y(n) = \frac{3}{4}y(n-1) - \frac{1}{8}y(n-2) + x(n)$ 16
 - OR
- **10.** a) State and prove sampling theorem.
 - b) A continuous time signal is given by $x(t) = 8\cos 200 \pi t$ Determine :
 - i) Minimum sampling rate i.e. Nyquist rate required to avoid aliasing.
 - ii) If sampling frequency $f_s = 400$ Hz. What the discrete time signal x(n) obtained after sampling.
 - iii) If sampling frequency $f_s = 150$ Hz. What is the discrete time signal x(n) obtained after sampling.

2

8

8

8

8

8