B.E. Computer Science & Engineering Fifth Semester

CSE505 - Operating System

P. Pages: 2 Time: Three Hours					* 1 2 6 9 *					GUG/W/18/1610 Max. Marks : 80	
	Note	3	2.] 3.]	•	ur answer vill be giv	s whereve en to neat	er nece	essary with the and adequate c sary.		sketches.	
1.	a)	Wha	at is c	operating Sy	stem? Exp	plain the o	concep	ot of time shar	ring.		8
	b)	b) State and explain different operating System Services.								8	
							Ol	R			
2.	a)			neant by Sy lain its type:		How it is	s used	by application	n Program du	ring execution.	8
	b)	Con	npare	Symmetric	al and Asy	ymmetrica	al mul	tiprocessing S	System.		4
	c)	What is multi programming? Explain.									
3.	a)	Stat	e and	explain dif	ferent pros	sses states	S.				4
	b)	Differentiate between Pre-emptive and Non-preemptive scheduling.									4
	c)	Discuss multiple processor scheduling with diagram.									8
							Ol	R			
4.	a)	Con	sider	the following	ng 4 proce	esses with	CPU	burst and arri	val time giver	n in milliseconds.	8
					Process	Arrival '	Time	Burst Time	Priority		
					\mathbf{P}_1	0		8	2		
					P ₂	1		4	1		
					P ₃	2		9	3		
		C 1	1.	.1	P ₄	3		5	6.11 : 1	1 1'	
			egies		e waiting t	ime and t	urnaro	ound time for	following scn	eaunng	
		i)	FCF	FS			ii)	SJF			
		iii)	Rou	nd Robin A	lgorithm		iv)	SRJF			
	b)	Exp	lain c	context swite	ching alon	g with pr	ocess	control Block			8
5.	a)			hat circumst when a page	-	_	occur	? Describe the	e actions taker	n by the operating	8

	b)	Consider the following page references string. 4 3 2 1 4 3 5 4 3 2 1 5 Assume page frame size =3, how many page fault will occur for:										
		i) FIFO ii) LRU										
		iii) OPTIMAL Algorithm iv) LFU										
		OR										
6.	a)	What is thrashing? What is the cause of thrashing? How can the System eliminate the Problem of thrashing?										
	b)	What is need of swapping? Describe Swapping with example. State its merits.										
7.	a)	What is deadlock? What are the necessary condition for its occurrence.										
	b)	A System with following processes and resources units.										
		i) Check the System for safe state and find sequence.										
		ii) Process P1 requests for one more instances of return type x and two instances of return type y can the request be granted?										
		$\begin{array}{ c c c c c c c c c c }\hline Allocation & & & & & & & & & & & & & & & & & & &$										
_		OR										
8.	a)	What is Semaphore? Explain different types of Semaphore.	8									
	b)	What is interprocess communication? How it can be achieved?										
9.	a)	Discuss different file organization in detail.										
	b)	Enlist and explain the access methods supported by file System.										
		OR										
10.	a)	What are the major threats for the System? Discuss.										
	b)	Write a short note on:										
		i) Trojan horse technique in security.										
		ii) Worm.										
