B.E. Electronics Engineering Fourth Semester EN 405 - Basic Electrical Machines

P. Pages : 3 Time : Three Hour			S * 1 2 2 7 *							G	GUG/W/18/1558 Max. Marks : 80				
	Note	s: 1. 2. 3. 4. 5. 6.	All quest Answer f Due cred Assume s Illustrate Use of sli permitted	ions carry ed ive question it will be given suitable data your answe de rule, Dra	qual m as as pe ven to where rs whe awing b	arks. er the neathe ever n rever Instru	instrucess. ecessa necess ments,	ry. sary w	given vith the	e help mmab	of nea le calc	t sket	ches. r is		
1.	a) Draw and explain in brief the phasor diagram of single phase transformer considering winding resistance and leakage reactance for lagging and leading power factor load.						5	8							
	b)	 A 5 KVA, 200/1000 V, 50 Hz, single phase transformer gave the following test results: O. C. Test (L.V.Side) :- 200 V, 1.2 A, 90 W. S.C. Test (H.V. side) :- 50 V, 5A, 1.10 W. i) Compute the parameter of the approximate equivalent circuit referred to its L.V. side. ii) Draw the equivalent circuit referred to the L.V. side. 								8					
							OR								
2.	a)	State the conditions for the parallel operation of 3-phase transformer. Discuss the necessity of the parallel operation.								4					
	b)	A 140 I 1750 W transfor i) Fu ii) Ha iii) Th	XVA, 6000 7. The max mer at- 11 load and alf load and he maximum	/400 V, star imum effici 0.8 p.f. lug l upf. m efficiency	ency o ging.	onnec	eted 3- at the	phase $\frac{3}{4}$ th	transf full lo	ormer ad. Fi	has and the	n iron efficio	loss of encies o	of the	8
	c)	Derive the emf equation of transformer.										4			
3.	a)	Classify d. c. generator according to the manner in which field winding is exited. Draw 8 circuit diagram and write their voltage equations.													
	b)	The fol Fo i) Vo	lowing data r this gene oltage on o	a is obtained $I_{f} (Amp)$ $E_{g} (Volt)$ rator obtain pen circuit t	1 for m 2 110 : o whic	agnet 3 155 ch mac	isation 4 186 chine v	n curv 5 212 will bu	e of d. 6 230 uild ur	c. shu 7 246 9 for sl	nt ger 8 260 nunt re	erato	r at 400) rpm.	8

- ii) Resistance of shunt circuit to reduce the open circuit voltage to 220 V.iii) The speed at which the machine just fails to excite.
- iv) Residual flux per pole.

- ii) Capacitor start induction motor. OR
- Why starter is necessary in 3-phase inductor motor. Which are the various starters in 8. a) induction motor? Explain one method each for squirrel cage and slip ring induction motor.

2

b) Draw and explain the exact equivalent circuit of 3-phase induction motor.

4.

5.

a)

b)

c)

a)

b)

c)

a)

b)

a)

b)

6.

7.

Deri	ive the condition for maximum effi	ciency	of d.c. shunt generator.						
Wha	at do you mean by mechanical, elec	ctrical a	and commercial efficiency of d. c. generator.						
A sh field	nunt generator delivers 195 Amp at l resistances are 0.02Ω and 50Ω r	termin especti	al voltage of 220 V. The armature and shunt vely. The iron and friction losses equals 900						
i)	FMF generated	ii)	Conner losses						
iii)	Output of the prime mover	iv)	Overall efficiency.						
)		1.)							
Deri	ive the torque equation of d. c. mot	or. Hen	nce justify in series motor, $T_a \alpha I_a^2$ & in						
shur	nt motor, $T_a \alpha I_a$.								
A 4- rpm has	pole, 240 volt, wave connected shu and drawing armature current and 540 conductors, its resistance is 0.2	ınt mot field cι 1Ω. As	tor gives 11.19 kW when running at 1000 urrent of 50 Amp and 1 Amp respectively. It ssuming a drop of 1 volt per brush. Find:-						
i)	Total torque	ii)	Useful torque						
iii)	Flux per pole,	iv)	Rotational losses and						
v)	Efficiency.								
Wh									
w nat is the significance of back emf in d. c. motor.									
		O	R						
Exp	lain the various methods of speed c	control	of d. c. shunt motor.						
Ad.	c. shunt motor with an armature res	sistance	e of 0.4Ω and field resistance of 100Ω drives						
a load at 500 rpm taking 27 Amp from the line. It is desired to drive the same load at 750									
rpm	rpm. The load torque is constant. Calculate the value of resistance to be used as field								
regulator. Assume that the field core is not saturated.									
A 3-	-phase 4-pole, 50 Hz induction mot	or has	a full load speed of 1440 rpm. For this motor						
calculate the following-									
i)	i) Full load slip and rotor current frequency.								
ii)	Speed of the stator field w.r.t.								
	a) Stator and	b)	Rotor.						
iii)	Speed of the rotor field w.r.t.								
	a) Rotor b) Sta	tor and	l c) Stator field.						
Wri	te short notes on								
i)) Shaded pole induction motor.								
/	т · · · · · · · · · · · · · · · · · · ·								

8

8

3

8

8

8

4

4

8

5

8

A 6-pole, 3-phase induction motor runs at a speed of 960 rpm when shaft torque is 136
 N.m and frequency 50 Hz. Calculate the rotor copper losses if friction and windage losses are 150 watt.

8

8

- **9.** a) Explain hunting in synchronous motor. What is the purpose of damper windings in synchronous machine?
 - b) Why the synchronous motor is not self starting? How it is made self started? Explain both the issues in detail.

OR

- 10. a) What do you mean by regulation? Why the terminal voltage decreases when the load is connected to it?
 - b) An alternator requires an excitation of 2 Amp to produce a full load short circuit current of 8 60 Amp. The same excitation on open circuit gives an emf of 260 V. If resistance of armature is 0.8Ω ; find full load regulation:
 - i) On resistive load.
 - ii) On 0.8 leading p.f. load.
 - c) When 3-phase alternator is connected to unity power factor load, explain how the armature flux has cross magnetizing effect. 5
