B.E. Electrical (Electronics & Power) Engineering Fourth Semester EP-403 - Analog and Digital Circuits

P. Pages : 2 Time : Three Hours		2 ree Hours $* 1 2 2 0 *$	GUG/W/18/1551 Max. Marks : 80
	Note	 es: 1. All questions carry marks as indicated. 2. Assume suitable data wherever necessary. 3. Illustrate your answers wherever necessary with the help of neat ske 	tches.
1.	a)	Minimize following function using k-map and realize it. i) $F(A, B, C, D) = \sum m (0, 1, 2, 5, 8, 14) + d(4, 10, 13)$ ii) $Y = ABC + B\overline{C}\overline{D} + \overline{A}BC$	8
	b)	Design Excess-3 code to BCD code converter using suitable gates.	8
		OR	
2.	a)	Draw and explain BCD to seven segment decoder.	10
	b)	Implement a full adder circuit using a single decoder and two OR gates.	6
3.	a)	What is the concept of clock ? Explain different methods of triggering a flip-	flop. 8
	b)	Design S.R. flip flop using J-K flip flop.	8
		OR	
4.	a)	Explain how race around condition is overcome using master slave flip-flop.	8
	b)	Draw and explain 3-bit binary ripple counter using J-K flip flop.	8
5.	a)	Draw and explain the block diagram of operational amplifier.	8
	b)	Explain the following terms :i) Output offset voltage.ii) Slew rate equation.	8
		OR	
6.	a)	Explain ideal and practical characteristics of operational amplifier.	8
	b)	For an op-amp used in inverting mode has the value of R_F and R_1 47 ks	Ω and 470 Ω 8

respectively. The input offset voltage drift is $28 \ \mu V/^{\circ}C$ while input offset current drift is $300 \ PA/^{\circ}C$. The amplifier is nulled at 25°C. if a input voltage of 12 mv peak sine wave at 2 kHz is applied.

- i) Calculate the error voltage & output voltage.
- ii) Draw the waveform at 55° C

7.	a)	Draw and explain the circuit of summing integrator using operational amplifier.	8
	b)	Draw the circuit of differential amplifier with two op-amp and derive the expression for its output voltage.	8
		OR	
8.	a)	What are the limitations of basic integrator using op-amp ? How can they eliminated in practical integrator.	8
	b)	Draw and explain precision full wave rectifier using operational amplifier.	8
9.	a)	Explain negative clamper circuit using operational amplifier.	8
	b)	Explain temperature compensated log amplifier using operational amplifier.	8
		OR	

16

- 10. Write a short note on **any two.**
 - i) Wein bridge oscillator.
 - Band pass filter. ii)
 - IC 555 timer. iii)
