B.E. Computer Science & Engineering Fourth Semester

CS402 - Digital Circuits and Fundamentals of Microprocessor

	ages : ne : Th		GUG/W/18/1540 Max. Marks : 80	
	Note	tes: 1. All questions carry marks as indicated. 2. Assume suitable data wherever necessary. 3. Illustrate your answers wherever necessary with the help of neat sketched	es.	
1.	a)	Do as directed -		
		i) $(ABCD.12)_{H} = (?)_{8} = (?)_{BCD}$	2	
		ii) $(4.236)_D = (?)_B = (?)_H = (?)_{excess-3}$	3	
		iii) $(100011101.00010)_2 = (?)_D = (?)_H = (?)_8$	3	
	b)	Implement the EX-OR gate using : i) NOR Gate only ii) NAND Gate only	8	
		OR		
2.	a)	Simplify the following functions using k-map. i) $f(A, B, C, D) = \sum m (0, 1, 4, 5, 7, 8, 9, 11) + d(2, 12, 13)$ ii) $f(A, B, C, D) = \overline{A} \overline{B} \overline{C} D + A B \overline{C} + \overline{A} B \overline{C} + \overline{A} \overline{B} + A C$	8	
	b)	State and prove Demorgan's theorem.	8	
3.	a)	Design a combinational circuit such that the 4-bit binary will appears at its input and will generate an output which will be high if the input number is prime number.		
	b)	What is full adder. Design and explain the working with the help of truth table equation.	and logie 8	
		OR		
4.	a)	Implement the following function using suitable multiplexer. $f(A, B, C, D) = \sum m(0, 1, 3, 6, 8, 9, 11, 13)$ consider B as a input line and A, C, D as a selection lines to the multiplexer.	8	
	b)	What is parity generator? Design a 3-bit odd parity generator and checker.	8	
5.	a)	Convert SR flip-flop to JK flip-flop.	8	
	b)	Draw the logic diagram of master-slave JK flip-flop and explain the working. He master-slave JK flip-flop overcome from the condition of race around? Explain.		
		OD		

OR

6.		Design a 3 bit Gray code up/down counter. Consider k as a control signal. If $k = 1$, counter acts as down counter and If $k = 0$, counter acts as up-counter.	
7.	a)	Explain the following instructions of μP 8085. i) PUSH RP ii) XCHG iii) SHLD iv) XTHL	8
	b)	A block of 50 bytes is present in the memory from location 5000H. Find out the even number and store them in a memory from the location 6000H. Write an assembly language program using 8085.	8
		OR	
8.	a)	Draw and explain the timing diagram of op-code fetch machine cycle.	8
	b)	Explain the interrupts of μP 8085.	8
9.	a)	Write an ALP to blink the LED's which are connected to PC5 of 8255 PPI having control word address 83H.	8
	b)	Interface the following memory IC's with µP 8085. Show all the signal lines properly. i) EPROM 4K Byte ii) RAM 4K Byte iii) ROM 4K Byte	8
		OR	
10.	a)	Explain the mode 3 of 8253 PIT in detail.	8
	b)	Explain the interfacing of 8253 with μP 8085. Show all the signal lines.	8
