P. Pages: 3

* 1 1 8 8 *

GUG/W/18/1509

Max. Marks: 80

4

4

8

- Notes : 1. All questions carry marks as indicated.
 - 2. Due credit will be given to neatness and adequate dimensions.
 - 3. Assume suitable data wherever necessary.
 - 4. Illustrate your answers wherever necessary with the help of neat sketches.
 - 5. Same answer book must be used for all question.
- 1. a) What do you understand by barrier potential cross junction? What is it significance. 4
 - b) Draw the VI characteristics in Forward & reverse bias & Explain them.
 - c) Sketch Vo for each clipping network given below for input shown. Assume the diodes are ideal.

- **2.** a) What is bleeder resistance? Why it is used in L C filter?
 - b) Justify that the efficiency of full wave rectifier is twice as compared to half wave rectifier. 4
 - c) A full wave rectifier uses a double diode with each element having a constant forward resistance of 500Ω . The transformer rms secondary voltage from the center tap to each plate is 300 v & load has a resistance of $2.5 \text{ k} \Omega$. Determine
 - i) dc output power ii) ac input power
 - iii) Rectification efficiency iv) Voltage regulation from no load to full load.
- a) Sketch typical CB input characteristics curves for an NPN transistor. Label all variables.
 8 How would you calculate the input dynamic resistance of the transistor?
 - b) In the circuit shown in Fig. $h_{FE} = 100$, $V_{BE} = 0.8 \text{ V} V_{CE} = 0.2 \text{ V}$, determine whether or not the silicon transistor is in saturation & find $I_B \& I_C$.

OR

- 4. a) A change of 250 V. in base Emitter voltage causes a change of 1mA in the base current.
 4. Determine the dynamic input resistance.
 - b) What is thermal run way & Heat sink?
 - c) Determine the d.c. bias current & voltage for the d.c. bias circuit shown in fig.

Also determine the stability factor of the bias circuit. Assume $V_{BE} = 0.7V$.

- 5. a) Explain the transfer characteristics for N-channel & P-channel MOSFETs alongwith their 8 output characteristics of an N channel Enhancement MOSFET.
 - b) Fig. shows the circuit of a source follower. Determine the voltage gain of the amplifier. **8** Also determine the input & output resistance of the amplifier. Assume $gm = 800 \ \mu s$, infinite input resistance & neglect FET output resistance.

- 6. a) Draw a small signal low-frequency model of a field Effect transistor and explain its 8 various elements. Also give the approximate range of the elements.
 - b) Fig. a) shows the circuit of a self biased JFET amplifier and fig b) shows the transfer scharacteristics. curve of the JFET. Find the quiescent values of ID & V_{GS}. Also find the value of d.c. voltage between the drain and ground.

4

8

7.	a)	Draw the circuit diagram of class – A transformer coupled power amplifier and explain its operation. Derive an expression for its maximum efficiency.	8
	b)	 Explain the following terms in connection with power amplifier. i) Collector circuit efficiency. ii) Collector dissipation rating. iii) Class A, Class B, Class C, operation. iv) Harmonic distortion. 	8
		OR	
8.	a)	Design a push-pull amplifier to deliver 200 mw to a load of 6Ω . Assume transformer efficiency to be 70% and $V_{CC} = 12$ V.	8
	b)	What is crossover distortion? How it is eliminated.	4
	c)	Differentiate between voltage & power amplifier.	4
9.	a)	State the three fundamental assumptions. Which are made in order that the expression $Af = \frac{A}{1+\beta A}$ be satisfied exactly. List five characteristics of an amplifier which are modified by negative feedback.	8
	b)	In a transistor Colpitts oscillator $L=100\mu$ H, $L_{RFC}=0.6$ mH, $C_1=0.001 \mu$ F, $C_2=0.01\mu$ F and 10μ F. Determine i) Operating frequency ii) Feedback fraction iii) Minimum gain to sustain oscillations and emitter resistance of Rc = 2.5 K Ω .	8

OR

- **10.** a) An amplifier with a gain of 60 dB has on output impedance of $10K\Omega$. It is required to **8** modify its output impedance to $1k\Omega$. What type of feedback has to be applied? Calculate the feedback factor. Also Find the percentage change in the overall gain, for a 10% change in the open loop gain of the amplifier.
 - b) What are the Barkhausen condition of oscillation in electronic system? What are their **8** significance? What are the factors which effect the frequency stability of an oscillator?
