B.E. Electronics & Telecommunication / Communication Engineering Third Semester (Old) CBS Pattern ET 304 - Digital Electronics

	Pages : ne : Th	2 aree Hours $* 1 1 8 0 *$	GUG/W/18/1496 Max. Marks : 80
	Not	es: 1. All questions carry equal marks. 2. Illustrate your answers wherever necessary with the help of neat sl	xetches.
1.	a)	What are the advantages of digital circuits over analog circuits.	5
	b)	State and prove DeMorgan's theorem for 3 variables.	5
	c)	Perform the following operation : i) Convert (675.625) ₁₀ to hexadecimal ii) Convert (574.321) ₈ to binary iii) Convert (6327.4051) ₈ to decimal	6
		OR	
2.	a)	Minimize the following Boolean functions using kmaps i) $f(A, B, C, D) = \sum m (0, 2, 3, 4, 5, 7, 8, 9, 13, 15)$ ii) $f(A, B, C, D) = \prod M (1, 2, 4, 5, 7, 8, 10, 11, 13, 14)$	8
	b)	Minimize the following Boolean function using Quine Mc Cluskey method $f(w, x, y, z) = \sum (1, 4, 6, 7, 8, 9, 10, 11, 15)$. 8
3.	a)	Define the following term :i)Fan inii)Fan outiii)Noise marginv)Power dissipation	10
	b)	Explain the operation of a TTL Nand gate.	6
		OR	
4.	a)	Explain the operation of CMOS Nand CMOS Nor gate.	8
	b)	What is Tristate logic. What are the difficulties encountered, when driving of gates. How is this overcome using a TSL inverter. Explain.	many number 8
5.	a)	 Design a logic circuit with 4 inputs A, B, C, D to generate an output Z which one or the other but not both of the following conditions are satisfied. i) Both inputs A and B are active ii) Either C or D or both are active 	ch is active if 8
	b)	Design a BCD to excess 3 code converter.	8
		OR	

1

6.	a)	Design a 5x32 decoder with 4 line 3x8 decoder and a 2x4 decoder.	8
	b)	Explain the working a 8 to 1 multiplexer with the help of a schematic.	8
7.	a)	Differentiate between synchronous and asynchronous sequential circuits.	8
	b)	What is race around condition in SR flip flop. How is this problem over came using master slave JK flip flop.	8
		OR	
8.	a)	Design a 3bit up down counter using JK flip flops.	12
	b)	Convert a JK filp flop to a D flip flop.	4
9.	a)	Explain the following terms in VHDL.i) Entityii) Architecture	6
	b)	Explain structural modelling, data flow modelling and behavioural modelling in VHDL.	10
		OR	
10.		Write short notes on any two .	16
		a) CPLD	
		b) FPGA	
		c) RAM	
		d) ROM	
