B.E. Electrical (Electronics & Power) Engineering / Electronics Engineering / Electronics & Telecomm. / Comm. Engineering / Instrumentation Engineering Third Semester (Old Pattern)

		EP/EN/ET/IN-301 : Applied Mathematics - III	
	ages : ne : Thi	2 eee Hours * 1 1 6 7 *	GUG/W/18/1483 Max. Marks : 80
	Note	es: 1. All questions carry equal marks. 2. Use of non programmable calculator is permitted.	
1.	a)	Find $L\left\{\frac{e^{-3t}-e^{-6t}}{t}\right\}$ Hence evaluate $\int_{0}^{\infty} \frac{e^{-3t}-e^{-6t}}{t} dt$	8
	b)	Express $f(t) = \begin{cases} t^2, & 0 < t < 1 \\ 4t, & t > 1 \end{cases}$	8
		in terms of unit step function and hence obtain its Laplace transform. OR	
2.	a)	Use convolution theorem to find $L^{-1}\left\{\frac{1}{(s+1)(s^2+1)}\right\}$	8
	b)	Solve, by Laplace transform method $\frac{d^2y}{dt^2} + 9y = \sin t$	8
		given that $y(0) = 1$, $y\left(\frac{\pi}{2}\right) = -1$.	
3.	a)	Find the inverse of a matrix $A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 3 & 4 \\ 1 & 4 & 3 \end{bmatrix}$ by the method of partitioning.	8
	b)	Test for consistency and solve $x + y + z = 6$	8
		x - y + 2z = 5	
		3x + y + z = 8	
		OR	
4.	a)	Find the modal matrix B corresponding to the matrix $A = \begin{bmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{bmatrix}$	8
		Also write down the diagonal matrix.	
	b)	If $\xi = x \cos \alpha - y \sin \alpha$ and $\eta = x \sin \alpha + y \cos \alpha$ prove that the transformation is orthogonal and hence write the inverse trans	5 sformation.
	c)	Investigate linear dependence or independence of the vectors $x_1 = (1, 2, 2)$ $x_2 = (2, 1, -2)$	3
		$x_2 = (2, 1, -2)$ $x_3 = (2, -2, 1)$	

- Verify Cayley Hamilton's theorem for the matrix $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & 1 & 2 \end{bmatrix}$ 8 5. a) and hence obtain A^{-1} .
 - Use Sylvester's theorem to show that $\sin A = (\sin 1)$ b) 8 A where $A = \begin{bmatrix} 1 & 0 \\ 2 & -1 \end{bmatrix}$

OR

- 6. 8 a) Solve, by matrix method $\frac{d^2x}{dt^2} + 5\frac{dx}{dt} + 6x = 0$ given that x(0) = 2 and $\frac{dx}{dt} = 0$ at t = 0.
 - Find the largest eigen value and the corresponding eigen vector of the following matrix, 8 b) by iterative method $A = \begin{bmatrix} 1 & 6 & 1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$
- 7. Solve 3
 - b) $(2z-y)\frac{\partial z}{\partial x} + (x+z)\frac{\partial z}{\partial y} + 2x + y = 0$ c) $\frac{\partial^2 z}{\partial x^2} + 2z^2 + 2z^2$ 5
 - c) $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} 3 \frac{\partial^2 z}{\partial y^2} = \sin(2x + 3y) + xy$ 8

- Solve $\frac{\partial^2 z}{\partial x^2} + 2 \frac{\partial^2 z}{\partial x \partial y} 8 \frac{\partial^2 z}{\partial y^2} = e^{2x+y} + \sqrt{2x+3y}$ 8. 8
 - 8 b) Solve, by the method of separation of variables $\frac{\partial u}{\partial x} - 2 \frac{\partial u}{\partial y} = u$ given that $u(x, 0) = 3e^{-5x} + 2e^{-3x}$
- Find the Fourier series for $f(x) = 2x x^2$, 0 < x < 2. 9. 8 a)
 - Find the half range cosine sines for $f(x) = \sin x$, $0 \le x \le \pi$. 8 b)

10. 8 a) Express $f(x) = \begin{cases} 1, & \text{for } |x| < 1 \\ 0, & \text{for } |x| > 1 \end{cases}$ as a Fourier integral and hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} dx$

Find the Fourier sine transform of $e^{-|x|}$ and hence show that 8 $\int_{1+x^2}^{\infty} \frac{x \sin mx}{1+x^2} dx = \frac{\pi}{2} e^{-m}, m > 0$

GUG/W/18/1483