B.E. Second Semester (Old) (C.B.S. Pattern) 101 - Applied Mathematics-II

P. Pages : 3 Time : Three Hours		Three Hours $* 1 1 5 2 *$	GUG/W/18/1454 Max. Marks : 80
	Not	es: 1. All questions carry equal marks.2. Use of Non-programmable calculator is permitted.	
1.	a)	Solve $1 + \log(xy) + \left(1 + \frac{x}{y}\right)\frac{dy}{dx} = 0$	5
	b)	Solve $ye^y dx = (y^3 + 2xe^y) dy$.	5
	c)	Solve $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = \frac{e^{-3x}}{x^2}$.	6
		OR	
2.	a)	Solve $x\left(\frac{dy}{dx}+y\right) = 1-y.$	4
	b)	Solve $y\left(1+\frac{1}{x}\right) + \cos y + \left(x+\log x - x\sin y\right)\frac{dy}{dx} = 0.$	5
	c)	Solve by variation of parameter. $\frac{d^2y}{dx^2} + y = \csc x.$	7
3.	a)	Solve $\frac{d^2y}{dx^2} + 2y = x^2 e^{3x} + e^x \cos 2x$.	8
	b)	Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + 4y = \log x \cos(\log x) + \frac{1}{x}$.	8
		OR	
4.	a)	Solve $\frac{dx}{dt} + 3x - 2y = 1$.	8

and $\frac{dy}{dt} - 2x + 3y = e^t$. given that x = 0, y = 0 at t = 0.

b) Solve
$$\frac{d^2y}{dx^2} = 2(y^3 + y)$$

given that $y = 0, \frac{dy}{dx} = 1$ when $x = 0$.
5. a) Evaluate, by changing the order of integration.
 $\int_{0}^{1} \sqrt{1-x^2} y^2 dy dx$.
b) Evaluate $\int_{0}^{1} \int_{-1}^{1} \int_{0}^{1} x dz dx dy$.
CR
6. a) Find the Centre of gravity of the area between $y = 6x - x^2$ and $y = x$.
b) Find the mass of tetrahedron bounded by the coordinate planes and the plane
 $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$, the variable density $\rho = kxyz$.
7. a) Show that the tangent vector to the curve
 $x = t^2 + 2, y = 2t^2 - 1, z = 2t^2 - 6t$ at $t = \pm 1$ are orthogonal.
b) A particle moves along the curve
 $\vec{r} = \cos w t \hat{i} + \sin w t \hat{j}$.
where w is constant and t is the time.
Show that
i) \vec{r} is perpendicular to \vec{v}
and ii) $\vec{r} \times \vec{v} = constant vector.$
c) Find the directional derivative of
 $\phi = 4e^{2x-y+z}$ at the point $(1,1,-2)$ in the direction towards the point $(-3,5,6)$.
OR

、

8. a) If
$$\overrightarrow{r} = \overrightarrow{a} \cos wt + \overrightarrow{b} \sin wt$$
.
Then show that
i) $\overrightarrow{r} \times \frac{d \overrightarrow{r}}{dt} = w \left(\overrightarrow{a} \times \overrightarrow{b}\right)$
and ii) $\frac{d^2 \overrightarrow{r}}{dt^2} = -w^2 \overrightarrow{r}$.

GUG/W/18/1454

4

b) A particle moves along the curve $x = 2t^2$, $y = t^2 - 4t$, z = 3t - 5, where t in time. Find the components of its velocity and acceleration at t = 1 in direction \overrightarrow{AB} if A(1,2,1) & B(2,-1,3).

c) Find the values of a and b so that the surfaces $ax^2 - byz = (a+2)^x$ and $4x^2y + z^3 = 4$ are orthogonal at the point (1, -1, 2).

- 9. a) Find the value of n for which the vector field $r^n \overrightarrow{r}$ will be solenoidal. Find also whether the vector field $r^n \overrightarrow{r}$ is irrotational or not.
 - b) Show that the vector field $\vec{F} = \left(y^2 \cos x + z^3\right)\hat{i} + (2y \sin x - 4)\hat{j} + (3xz^2 + 2)\hat{k}$ is irrotational. Also find its scaler potential ϕ .

OR

- 10. a) Evaluate, by Gauss-Divergence Theorem $\iint_{S} \vec{F} \circ \hat{n} \, ds.$ where $\overrightarrow{F} = 4x \, \hat{i} - 2y^2 \, \hat{j} + z^2 \, \hat{k}$ and S is closed surface bounded by. cylinder $x^2 + y^2 = 4$ and planes z = 0 and z = 3.
 - b) Evaluate, by stokes theorem

 $\int_{C} \overrightarrow{F} \circ d\overrightarrow{r}.$ where $\overrightarrow{F} = (2x + y) \hat{i} - 4z^2 \hat{j} - y^2 \hat{k}.$ and C is boundary of circle $x^2 + y^2 + z^2 = 1, z = 0.$

8

6

8

8