Bachelor of Science (B.Sc.-III) Sixth Semester **B.Sc. 4532 - Mathematics Paper-II (Optional)** (Number Theory and Discrete Mathematics)

has only one solution.

P. Pages: 3 Time : Three Hours

1.

2.

* 1 0 6 8 *

GUG/W/18/1355

Max. Marks: 60

- Notes : 1. Solve **all five** questions.
 - Q. 1 to Q. 4 have an alternative solve each question in full or its alternative in 2. full.
 - All questions carry equal marks. 3.

UNIT – I

a)	Find a solution of $8x + 7y = 89$	6
b)	Find a general solution of $12x + 7y = 122$	6
	OR	
c)	Prove that $ax + by = a + c$ is solvable if and only if $ax + by = c$ is solvable.	6
d)	State and prove Wilson's theorem.	6
	UNIT – II	
a)	Find all integer that satisfies simultaneously $x \equiv 2 \pmod{3}$ $x \equiv 3 \pmod{5}$ $x \equiv 5 \pmod{2}$.	6
b)	Find all integer that give remainders 1, 2, 3 when divided by 3, 4, 5 respectively.	6
	OR	
c)	Solve $x^2 + x + 7 \equiv 0 \pmod{189}$.	6
d)	Prove that $ax \equiv b \pmod{m}, (a, m) = 1$	6

2

Show that the following graphs are isomorphic. 3. a)

b) Show that the digraphs given below are isomorphic.

u₅

- Find the path originating in node 1 and ending in node 3 and some cycles of given c) diagraph.
- d) Find a node-base for the digraph given below.

Show that in a lattice if $a \le b$ and $c \le d$, then $a * c \le b * d$.

OR

ii)

- Prove that the Boolean identities c)
 - $a \oplus (a' * b) = a \oplus b.$ i)

iii)
$$(a*b*c)\oplus(a*b)=a*b.$$

GUG/W/18/1355

4.

a)

3

 $a * (a' \oplus b) = a * b.$

6

6

6

6

6

6

6

	d)	Simplify the Boolean expression.	6
		i) $(a*c) \oplus c \oplus [(b \oplus b')*c]$	
		ii) $(a'*b'*c) \oplus (a*b'*c) \oplus (a*b'*c').$	
5.		Solve any six.	
	a)	Let a, b, c, d, x, y denote integers then show that $a \equiv b \pmod{m}, b \equiv a \pmod{m}$ and	2
		$a-b \equiv 0 \pmod{m}$ are equivalent.	
	b)	Exhibit a reduced residue system for the modulo 12 and 30.	2
	c)	Solve congruence. $x^{2} + 2x - 3 \equiv 0 \pmod{9}$	2
	d)	Solve $x^3 + 4x + 8 \equiv 0 \pmod{15}$	2
	e)	Define Reachable set.	2
	f)	Find all the indegrees and outdegrees of the digraph given below	2
		v_1 v_4 v_5	

v3

v₂

g) Let the sets $S_0, S_1, ---, S_7$ be Given by

Solven by $S_{0} = \{a, b, c, d, e, f\};$ $S_{1} = \{a, b, c, d, e\};$ $S_{2} = \{a, b, c, e, f\};$ $S_{3} = \{a, b, c, e\};$ $S_{4} = \{a, b, c\};$ $S_{5} = \{a, b\};$ $S_{6} = \{a, c\};$ $S_{7} = \{a\}$ Draw diagram of (L, \subseteq) Where $L = \{S_{0}, S_{1}, ---S_{7}\}.$

h) Define Hasse diagram.

2

2