Bachelor of Science (B.Sc.)-III Fifth Semester B.Sc. 3528 / MAT 301 - Mathematics Paper-I (Compulsory) (Linear Algebra)

P. P Tim	ages : e : Thr	2 ree Hours $* 1028 *$	GUG/W/18/1315 Max. Marks : 60
	Note	es: 1. Solve all the five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	Prove that a necessary condition that $F(z) = u(x, y) + iv(x, y)$ be analytic in that $u_x = v_y$ and $u_y = -v_x$ in D.	a region D is 6
	b)	If $f(z)$ and $f(\overline{z})$ are analytic functions prove that $f(z)$ is constant. OR	6
	c)	Find the fixed points of the bilinear transformation $W = \frac{(2+i)z-2}{i+z}$. What is its normal form? Show that the transformation is low odromic	6
	(b	Prove that the group ratio remains invariant under a hilinger transformation	6
	u)	UNIT – II	. 0
2.	a)	Prove that a non-empty subset U of a vector space V over F is a subspace of if	of V if and only 6
		i) $u+v \in U \forall u, v \in U \text{ and}$ ii) $\alpha u \in U \forall \alpha \in F, u \in U$	
	b)	Let U, W be subspaces of a vector space V(F). Prove that $U \bigcup W$ is a subspace only if $U \subseteq W$ or $W \subseteq U$.	bace of V if and 6
	,	OR	
	с)	Let v_1, v_2, \dots, v_n be n vectors of a vector space V(F). Prove that i) $[v_1, v_2, \dots, v_n] = [\alpha_1 v_1, \alpha_2 v_2, \dots, \alpha_n v_n], \alpha_i (\neq 0) \in F \forall i$ ii) $[v_1, v_2] = [v_1 - v_2, v_1 + v_2]$	0
	d)	Prove that the set $B_1 = \{ (1, 1, 1), (1, -1, 1), (0, 1, 1) \}$ is a basis of v_3 .	6
		UNIT – III	
3.	a)	Let U, V be vector spaces over the same field F. then prove that a function linear if and only if $T(\alpha u + \beta v) = \alpha T(u) + \beta T(v)$, $\forall u, v \in U$ and $\alpha, \beta \in F$.	$T: U \to V$ is 6
	b)	If $T: V_2 \to V_4$ be a linear map defined by $T(1,1) = (0, 1, 0, 0), T(1,-1) = (0, 1, 1), (1,-1)$ is basis of V_2 . Find $T(x, y)$.	1, 0, 0, 0) 6

OR

GUG/W/18/1315

c)	Let	$T: U \rightarrow V$ be linear map. then prov	e that	
	i)	R(T) is a subspace of V.	ii)	N(T) is a subspace of U.

d) Prove that a linear map $T: V_3 \rightarrow V_3$ defined by $T(e_1) = e_1 - e_2, T(e_2) = 2e_2 + e_3$ $T(e_3) = e_1 + e_2 + e_3$ is neither 1-1 nor onto.

$\mathbf{UNIT} - \mathbf{IV}$

- 4. a) Let V be an inner product space over F. If U, $v \in V$ then prove that $|(U, V)| \le ||U|| ||V||$. 6
 - b) Let V be a set of all continuous complex-valued function on the closed interval [0,1]. If **6** $F(t), g(t) \in V$ define. $(F(t), g(t)) = \int_{0}^{1} F(t) \overline{g}(t) dt$ show that this defines an inner product on V.

OR

- c) Let $\{x_1, x_2, \dots, x_n\}$ be an orthogonal set. Then prove that $\|x_1 + x_2 + \dots + x_n\|^2 = \|x_1\|^2 + \|x_2\|^2 + \dots + \|x_n\|^2$. 6
- d) Find the orthonormal basis of P₂[-1, 1] starting from the basis {1, x, x²} using the inner **6** product defined by (F,g) = $\int_{-1}^{1} F(x) g(x) dx$

5. Solve any six.

h)	Define orthonormal set.	2				
g)	Let V be an inner product space over F. Then prove that $\ \alpha U \ = \alpha \ u \ $, $\forall u \in V$, $\alpha \in F$.	2				
f)	Define Isomorphism of vector spaces.	2				
e)	Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $T(x, y) = (x+1, y+2)$ is not a linear map.	2				
d)	If v_1, v_2, \dots, v_n are LI vectors then prove that $v_i \neq 0$ for each i.	2				
c)	Define Basis of vector space.	2				
b)	Show that $u = 2x - x^3 + 3xy^2$ is harmonic.	2				
a)	Show that the CR equations are satisfied only at $z = 0$ for $F(z) = z ^2$.	2				

6