Bachelor of Science (B.Sc.) Fourth Semester B.Sc. 24121 - Physics Paper-I (Quantum Mechanics And Molecular Physics)

P. Pages: 3

Time : Three Hours

* 1 0 1 3 *

Max. Marks : 50

GUG/W/18/1300

	Not	es :	 All questions are compulsory. Draw well labelled diagrams wherever necessary. 			
1.	• Either					
	a)	i)	State and explain Heisenberg's uncertainty principles. Also write it in terms of energy and time.	3		
		ii)	Illustrate the uncertainty principle using Heisenberg's v-ray thought experiment.	4		
		iii)	Find the smallest possible uncertainty in the position of an electron moving with velocity 3×10^7 m/s.	3		
			(Given : $\hbar = 1.054 \text{ x } 10^{-34} \text{ Js}, \text{ m}_0 = 9.11 \text{ x} 10^{-31} \text{ kg}$)			
			OR			
	b)	i)	What is free particle?	1		
		ii)	Write Schrodinger's wave equation for a free particle in one dimensional box and solve it and obtain eigen value of energy.	3		
		iii)	Find the lowest energy of a neutron confined to a nucleus of size 10^{-14} m. (Given : mass of the neutron = 1.67×10^{-27} kg)	3		
2.		Eith	ier			
	a)	i)	What are the different types of molecular spectra?	3		
		ii)	Obtain an expression for vibrational energy levels of a diatomic molecules.	5		
		iii)	Show that, vibrational energy levels are equally spaced.	2		
			OR			
	b)	i)	Describe the experimental arrangement to study the Raman effect with the help of a neat diagram.	4		
		ii)	Explain the term.	3		
			a) Stoke's lines.			
			b) Anti-Stoke's lines.			
		iii)	The wavelength of an exciting line in an experiment is 5460 A° and Stokes' line is at 5520A°. Find the wavelength of antistoke line.	3		

3.	`	Either	01/					
	a)	Define the term phase velocity and group velocity. Obtain the relation between them.	21/2					
	b)	What is an operator? Derive an expression for linear momentum operator.	21/2					
	c)	Distinguish between homonuclear and heteronuclear molecules with examples of each.	21/2					
	d)	Explain elementary idea of NMR.	21/2					
	OR							
	e)	Calculate the de-Broglie wavelength of an electron moving with velocity $\frac{3}{5} \text{ c.} \begin{pmatrix} \text{Given } h = 6.63 \times 10^{-34} \text{ Js} \\ m_0 = 9.11 \times 10^{-31} \text{ kg} \end{pmatrix}$	21/2					
	f)	What is eigen function and eigen value? Explain them with example.	21/2					
	g)	Why all molecules do not show rotational spectra? Explain.						
	h)	Explain in brief ESR.	21/2					
4.	a)	Either Obtain an expression for Schrodinger's time dependent equation for a particle moving along x-axis.	21/2					
	b)	Find the eigen values for the operator d^2/dx^2 operating on the wave function.	21/2					
		i) $\Psi = \cos x$ ii) $\Psi = e^x$						
	c)	Obtain an expression for rotational energy of a diatomic molecule.	21/2					
	d)	State and explain Franck-Condon principle for the intensity distribution.	21/2					
	OR							
	e)	State de-Broglie's hypothesis for matter waves. Obtain de-Broglie wave equation.	21/2					
	f)	Discuss the physical significance of wave function. what does square of wave function signify?	21/2					
	g)	For HCl molecule the frequency of rotational absorption line is 20.7 cm ⁻¹ and B = 10.35 cm ⁻¹ . Atomic mass number of chlorine is 35.46. $m_{\mu} = 1.0008$ and $N_0 = 6.024 \times 10^{23}$ molecule/mole. Determine bond length of HCl molecule.	21/2					
	h)	Describe in brief electronic spectra of a diatomic molecules.	2 ¹ / ₂					
5.		Solve any ten of the followings.						
		a) What is wave packet?	1					

GUG/W/18/1300

 c) What is dispersive and non dispersive medium? d) What is step potential? e) Define transmission coefficient. f) What is degeneracy of energy level? g) Write selection rule for pure vibrational spectra. h) Write the expression for frequency of rotational spectra. i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	b)			
 d) What is step potential? e) Define transmission coefficient. f) What is degeneracy of energy level? g) Write selection rule for pure vibrational spectra. h) Write the expression for frequency of rotational spectra. i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	c)			
 e) Define transmission coefficient. f) What is degeneracy of energy level? g) Write selection rule for pure vibrational spectra. h) Write the expression for frequency of rotational spectra. i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	d)			
 f) What is degeneracy of energy level? g) Write selection rule for pure vibrational spectra. h) Write the expression for frequency of rotational spectra. i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	e)			
 g) Write selection rule for pure vibrational spectra. h) Write the expression for frequency of rotational spectra. i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	f)			
 h) Write the expression for frequency of rotational spectra. i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	g)			
 i) What is harmonic oscillator? j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	h)			
 j) Discuss the practical importance of Raman effect. k) What is Dissociation energy? l) State two application of ESR. 	1	i)			
 k) What is Dissociation energy? l) State two application of ESR. 	1	j)			
1) State two application of ESR. ************************************	1	k)			
*****	1	l)			