Bachelor of Science (B.Sc.) (Part - II) Fourth Semester **B.Sc. 24112 - Mathematics Paper-II (Classical Mechanics & Statics)**

P. Pages : 2 Time : Three Hours	* 1 0 1 0 *	GUG/W/18/1297 Max. Marks : 60
Notes : 1. Solve all five questions		

2. All questions carry equal marks.

UNIT - I

- The moments of a system of forces not in equilibrium acting on a rigid body in one plane 1. 6 a) about three collinear points A, B, C in the plane are G_1, G_2, G_3 . Prove that G_1 ; BC + G_2 ; CA + G_3 ; AB = 0.
 - A uniform rod AB is inclined at an angle 60° to the vertical with one end A resting against b) 6 a smooth vertical wall. The rod AB is supported by a string attached to a point C of the rod, distance 1 foot from B and also to a ring in the wall vertically above A. If the length of the rod 4 feet, find the position of the ring, reaction of the wall, the inclination and tension of the string.

OR

Obtain the cartesian equation of the uniform catenary c) $y = c \cos\left(\frac{hx}{c}\right)$

A uniform chain of length ℓ is to be suspended from two points A and B in the same d) horizontal line so that either terminal tension is n times that act the lowest point. Show

that the span AB is $\frac{1}{\sqrt{n^2-1}} \log \left[n + \sqrt{n^2-1} \right]$

UNIT - II

Prove that the virtual work on a mathematical system by the applied forces and the 2. a) reversed effective forces is zero.

i.e.
$$\sum_{i} (f_i^{(a)} - p_i^{\cdot}) \cdot \delta r_i = 0$$

Derive the Lagrange's equation of motion b)

 $\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0, \, i = 1, 2, 3 n$

for conservative system, from D'Alembert's principle.

OR

Discuss the motion of a particle in a plane by using polar coordinates. c) Construct a Lagrangian for a spherical pendulum and then obtain the Lagrange's equations d) 6 of motion.

6

6

6

6

6

UNIT - III

a)	Prove that the problem of the motion of two masses interacting only with one another always be reduced to a problem of the motion of a single mass.	6
b)	Show that for a central force field F, the path of a particle of mass m is given by $\frac{d^2u}{d\theta^2} + u = -\frac{m}{h^2u^2} F\left(\frac{1}{u}\right), u = \frac{1}{r}$	6
	OR	
c)	Prove that the square of the periodic time of the planet is proportional to the cube of the semi-major axis of its elliptic orbit.	6
d)	Show that for a particle moving under a central force such that $V = kr^{n+1}$ the virial	6
	theorem reduces to $2 \overline{T} = (n+1) \overline{V}$	
	UNIT - IV	
a)	Show that Hamilton's principle is a necessary & sufficient condition for Lagrange's equations.	6
b)	Show that Hamilton's principle can be derived from D'Alembert's principle.	6
	OR	
c)	Obtain Hamilton's equations from variational principle.	6
d)	Prove that for a single particle system, the least action principle yields. $\Delta \int \sqrt{2m(H-V)} ds = 0$, where $ds = dr $	6
	Solve any six.	
a)	Prove that $S = C \sinh \frac{x}{c}$	2
b)	Define virtual work.	2
c)	A bead is sliding on a uniformly rotating wire in a force-free space. Show that the acceleration of the bead is $\ddot{r} = r w^2$, where w is the angular velocity of rotation.	2
d)	Write the Lagrangian and equation of motion for a mass m suspended by a spring of force constant K and allowed to swing vertically.	2
e)	Define the areal velocity.	2
f)	State Kepler's second law of planetary motion.	2
g)	Apply variational principle to find the equation of one dimensional harmonic oscillator.	2
h)	Show that A cyclic coordinate will be absent in Hamiltonian.	2
	 a) b) c) d) d) e) f) g) h) 	 a) Prove that the problem of the motion of two masses interacting only with one another always be reduced to a problem of the motion of a single mass. b) Show that for a central force field F, the path of a particle of mass m is given by d²u/dθ² + u = -m/h²u² F(1/u), u = 1/r OR c) Prove that the square of the periodic time of the planet is proportional to the cube of the semi-major axis of its elliptic orbit. d) Show that for a particle moving under a central force such that V = krⁿ⁺¹, the virial theorem reduces to 2 T = (n+1) V a) Show that Hamilton's principle is a necessary & sufficient condition for Lagrange's equations. b) Show that Hamilton's principle can be derived from D'Alembert's principle. OB c) Obtain Hamilton's equations from variational principle. d) Prove that for a single particle system, the least action principle yields. A ∫ √2m (H-V) ds = 0, where ds = dr Solve any six. a) Prove that S = C Sinh ±/c b) Define virtual work. c) A bead is sliding on a uniformly rotating wire in a force-free space. Show that the acceleration of the bead is r² = r w², where w is the angular velocity of rotation. d) Write the Lagrangian and equation of motion for a mass m suspended by a spring of force constant K and allowed to swing vertically. e) Define the areal velocity. f) State Kepler's second law of planetary motion. g) Apply variational principle to find the equation of one dimensional harmonic oscillator. h) Show that A cyclic coordinate will be absent in Hamiltonian.