Bachelor of Science (B.Sc. – II) Fourth Semester B.Sc. 24111 – Mathematics Paper – I (Abstract Algebra & Differential Equation)

P. Pages : 3

Time : Three Hours

* 1 0 0 9 *

GUG/W/18/1296

Max. Marks: 60

6

6

Notes : 1. Solve all the **five** questions.

- 2. Question 1 to 4 has an alternative solve each question in full or its alternative in full.
- 3. All questions carry equal marks.

UNIT - I

- 1. a) Show that in a group G, the mapping $T: G \to G$, given by $T(x) = x^{-1} \forall x \in G$ is an automorphism of G if and only if G is abelian. If $x_0 \in G$ with $x_0 \neq x_0^{-1}$ then $T \neq I$.
 - b) Let G be a group for $g \in G$ define $T_g : G \to G$ by

 $T_g x = g^{-1} x \, g, \; \forall \, x \in G$

prove that T_g is an automorphism of G.

OR

c) Let G be a group and $g \in G$. Functions $T_g: G \to G$, $t_g: G \to G$ are defined by $T_g(x) = xg, t_g(x) = gx \ \forall x \in G$, Prove that

- i) $T_g t_h = t_h T_g \quad \forall g, h \in G$
- ii) If $\theta: G \to G$ is one one onto such that $\theta.T_g = T_g.\theta \ \forall g \in G$ then $\theta = t_h$ for some $h \in G$.
- d) Prove that, if H, K be subgroups of group G, then HK is a subgroup of G iff HK = KH. 6

UNIT – II

2.	a)	If in a ring R, $x^3 = x, \forall x \in R$ then show that R is commutative.	6
	b)	If R is a ring with zero element 0, then prove that for all $a, b, c \in R$. i) $a0 = 0a = 0$	6
		ii) $a(-b) = (-a)b = -(ab)$	

iii) (-a)(-b) = ab

OR

c) Let the characteristic of the ring R be 2 and let $ab = ba \forall a, b \in \mathbb{R}$. 6 Then show that,

$$(a+b)^2 = a^2 + b^2 = (a-b)^2$$

GUG/W/18/1296

$$U = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \middle| a, b \in R \right\}$$
$$V = \left\{ \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix} \middle| a, b \in R \right\}$$
$$W = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \middle| a, b, c \in R \right\}$$

be non empty subsets of M. Show that,

- i) U is a right ideal of M but U is not a left ideal.
- ii) V is a left ideal of M but not a right ideal.

UNIT – III

3. a) Show that
$$P_n(1) = 1$$
 and $P_n(-x) = (-1)^n P_n(x)$
Use on otherwise deduce that $P_n(-1) = (-1)^n$

Hence or otherwise deduce that $P_n(-1) = (-1)^n$

b) Prove that

$$\int_{-1}^{1} (x^2 - 1) P'_n P_{n+1} dx = \frac{2n(n+1)}{(2n+1)(2n+3)}$$

OR

c) Show that

$$J_{1/2}'(x) J_{-1/2}(x) - J_{-1/2}'(x) J_{1/2}(x) = \frac{2}{\pi x}$$

d) Prove that

$$\int_{0}^{x} x^{-n} J_{n+1}(x) dx = \frac{1}{2^{n} n!} - x^{-n} J_{n}(x)$$

$\mathbf{UNIT}-\mathbf{IV}$

4.	a)	Find the Fourier Series for the function	6
		$f(x) = e^{ax}, -L < x < L$	

b) Expand the following function in Fourier Series $f |x) = |x|, x \in (-\pi, \pi)$

2

6

6

6

6

6

c) If
$$f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \sin x, & 0 < x < \pi \end{cases}$$

Prove that

$$f(x) = \frac{1}{\pi} + \frac{\sin x}{2} - \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos 2nx}{4n^2 - 1}$$

d) Find the Fourier Sine series

$$f(x) = \frac{1}{4} - x, \ 0 < x < \frac{1}{2}$$
$$= x - \frac{3}{4}, \ \frac{1}{2} < x < 1$$

5. Solve any six.

a)	Show that for an abelian group $G, I(G) \neq \{I\}$	2
b)	For $G = S_3$ prove that $G \approx I(G)$.	2
c)	Define the ring.	2
d)	Let R be a ring. Prove that if $a, b \in R$, then	2
	$(a+b)^2 = a^2 + ab + ba + b^2$	
	where by x^2 we mean xx.	
e)	Show that $\int_{-1}^{1} x^3 P_3(x) dx = \frac{4}{35}$	2
f)	-1 Show that $n P_{n-1} = (2n+1)x P_n - (n+1)P_{n+1}$	2
g)	Let f & g be respectively even and odd functions defined on the real line if $f + g = 0$ on R then Prove that $f(x) = 0 = g(x)$ on R.	2
h)	Define the periodic function.	2

6