Bachelor of Science (B.Sc.) Third Semester (Old Course) B.Sc.23111 / MAT 201 : Mathematics Paper-I (Advanced Calculus And Group Theory)

	ages : ie : Th	2 ree Hours $* 0 9 8 3 *$	GUG/W/18/1270 Max. Marks : 60
	Not	es : 1. Solve all five questions. 2. All questions carry equal marks.	
		UNIT – I	
1.	a)	 Let G be a group then prove that i) The identity of group G is unique. ii) The every a∈G has a unique inverse in G. 	6
	b)	Prove that a nonempty subset H of the group G is a subgroup of G if and o $a, b \in H \Rightarrow ab^{-1} \in H$.	nly if 6
		OR	
	c)	Prove that any two right cosets of a subgroup are either disjoint or identica	d. 6
	d)	Show that the intersection of two normal subgroup of G is a normal subgro	oup of G. 6
		UNIT – II	
2.	a)	For S = { 1, 2, 39 } and a, b \in A(s). Compute $a^{-1} \cdot b a$, where a = (5 b = (1, 2, 3)	5, 7, 9) and 6
	b)	Prove that $(1, 2, 3, 4, 5, 6, 7, 8)^4 = (1, 5) (2, 6) (3, 7) (4, 8)$.	6
		OR	
	c)	Let G be any group, g a fixed element in G. Define $\phi: G \to G$ by $\phi(x) = g$ that ϕ is an isomorphism of G into G.	$g x g^{-1}$. Prove 6
	d)	If ϕ is a homomorphism of group G into a group G', then prove that i) $\phi(e) = e'$ and	6
		ii) $\phi(x^{-1}) = [\phi(x)]^{-1} \forall x \in G$, where e and e' are unit elements of G as respectively.	nd G'
		UNIT – III	
3.	a)	Using $\in -\delta$ definition of limit of a function, prove that $\lim_{(x,y)\to(1,1)} (x^2 + 2y) = 3$	6

b) Prove that the function f(x, y) = x + y is continuous $\forall (x, y) \in \mathbb{R}^2$.

OR

6

c) If
$$u(x,y) = \frac{x^2 + y^2}{x + y}$$
, then prove that $\left(\frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)^2 = 4\left(1 - \frac{\partial u}{\partial x} - \frac{\partial u}{\partial y}\right)$.

d) If z = f(x, y) and $x = r \cos \theta$, $y = r \sin \theta$ then show that $\left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2 = \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2$

UNIT - IV

4. a) If
$$xu = yz$$
, $yv = xz$ and $zw = xy$ then find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ 6

b) Verify Euler's theorem on homogenous function for $u = \log \frac{x+y}{x-y}$

OR

- c) Let f(x, y) be defined in an open region D. Suppose that it has a local maximum or local minimum at (x_0, y_0) . If the partial derivatives f_x and f_y exists at (x_0, y_0) , then prove that $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$.
- d) Find by using Lagrange's method of multipliers, the least distance of the origin from the plane x-2y+2z=9.

5. Attempt **any six**.

a)	If G is a group, then prove that	t for every $a \in G. (a^{-1})^{-1} = a$.	2

- b) Define left and right coset of subgroup H of group G.
- c) Find the cyclic length of permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 2 & 3 & 4 & 1 \end{pmatrix}$
- d) If G is group and $\phi: G \to G$ such that $\phi(x) = x^2$. $\forall x \in G$, then prove that ϕ is homeomorphism.

e) If
$$f(x) = x^2$$
, $x \in \mathbb{R}$ then prove that $f(x)$ is continuous at $x = 3$.

f) If
$$u = e^x (x \cos y - y \sin y)$$
 then find $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y}$.

- g) If u = f(x, y), v = g(x, y) are differentiable functions of independent variable x and y then define Jacobians. 2
- h) Define absolute maximum and absolute minimum of function f(x, y)

6

2

2

2

2

6

6