Bachelor of Science (B.Sc.) Second Semester Old 2SMAT 104 - Mathematics Paper-II (Differential Equation and Analysis)

P. Pages: 2

Time : Three Hours

Max. Marks : 60

GUG/W/18/1245

	Note	 Solve all five questions. Question No. 1 to 4 has an alternative solve each question in full or its alternative in full. All question carry equal marks. 	
		UNIT – I	
1.	a)	Show that D. E. $(\sin x \cdot \sin y - xe^y)dy = (e^y + \cos x \cdot \cos y)dx$ is exact and find its solution.	6
	b)	Solve the differential equation $(1+y^2)dx = (tan^{-1}y - x)dy.$	6
		OR	
	c)	Solve the differential equation $p^3 - 2xyp + 4y^2 = 0$.	6
	d)	Find orthogonal trajectory of $r^n = a^n \cdot \cos n_{\theta}$	6
		UNIT – II	
2.	a)	Solve the D. E. $(D^3 - 7D - 6)y = e^{2x} \cdot (1 + x)$	6
	b)	Solve the D. E. $y'' + 2y' + y = e^{-x} \cdot \log x$	6
		OR	
	c)	Solve the D. E. $(1-x^2)y'' - xy' - a^2y = 0$ of which $y = ce^{a \sin^{-1} x}$ is an integral.	6
	d)	Solve the D. E. $x^{2}y'' + 3xy' + 10y = 0$ by changing the independent variable from x to $z = \log x$.	6
		UNIT – III	
3.	a)	Prove that if $\lim S_n$ exists then if must be unique.	6
	b)	Let $X = \{x_n\}$ and $Y = \{y_n\}$ be sequences of real numbers that converges to x & y then prove that sequence $X + Y$ converges to $x + y$.	6

GUG/W/18/1245

6

6

6

6

2

2

- c) Prove that every convergent sequence of real numbers is a cauchy sequence.
- d) Prove that a sequence $\{s_n\}$ converges if and only if for each $\in >0$, there exists $M \in N$ 6 such that $|S_m - S_n| < \in$. $\forall m, n \ge M$.

UNIT – IV

- **4.** a) Prove that an infinite series is convergent if and only if its sequence of partial sums is a cauchy sequence. **6**
 - b) Let $u_n \ge 0$ and $v_n \ge 0 \forall n$ such that $\lim_{n \to \infty} \frac{u_n}{v_n} = \ell$, $\ell \ne 0, \infty$. Then prove that

 Σu_n and Σv_n converges or diverges together.

OR

c) Prove that the series
$$\sum_{n=1}^{\infty} \frac{n^3 + a}{2^n + a}$$
 is convergent series by D'Alembert's ratio test.

d) Prove that
$$\sum \left(\frac{n}{n+1}\right)^n \cdot x^n$$
, $x > 0$ is divergent for $x = 1$ and convergent for $x < 1$.

- 5. Solve any six.
 - a) Form the differential equation from the equation y = ACosmx + BSinmx
 - b) Solve the linear differential equation 2

$y' + y = \frac{1}{1 + e^{2x}}$

n→∞

c) Solve the D.E. y'' + y' - 6 = 0. 2

d) Find P. I. of
$$\frac{1}{D^2 + 1} \cdot \sin 2x$$
 2

- e) Define the limit of sequence at infinity.2f) Show that $\lim_{n \to \infty} n^{y_n} = 1$ by Cauchy formula.2
- g) Show that if Σu_n converges then $\Sigma k u_n$ converges for $k \in \mathbb{R}$.

h) Test the convergence of series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
.