Bachelor of Science (B.Sc.)-I Second Semester Old 2SMAT 103 - Mathematics Paper-I (Vector Calculus, Geometry & Difference Equation)

P. Pages : 2 Time : Three Hours			s × 0 9 5 7 *	GUG/W/18/1244 Max. Marks : 60
	Note	es: 1. 2. 3.	Solve all five questions. Question 1 to 4 has an alternative. Solve each question in full of full. All questions carries equal marks.	r its alternative in
			UNIT - I	
1.	a)	Prove t	hat $\overline{\mathbf{a}} \times (\overline{\mathbf{b}} \times \overline{\mathbf{c}}) = (\overline{\mathbf{a}}, \overline{\mathbf{c}}) \overline{\mathbf{b}} - (\overline{\mathbf{a}}, \overline{\mathbf{b}}) \overline{\mathbf{c}}.$	6
	b)	If \overline{a} = find i)	$= \overline{i} - \overline{j} - \overline{k}, \ \overline{b} = \overline{j} + \overline{k}, \ \overline{c} = \overline{i} - \overline{j}$ $ (\overline{a} \times \overline{b}) \times \overline{c} \qquad ii) \overline{a}.(\overline{b} \times \overline{c})$	6
			OR	
	c)	If $\overline{V} =$	$\overline{\mathbf{w}} \times \overline{\mathbf{r}}$, prove that $\overline{\mathbf{w}} = \frac{1}{2}$ curl $\overline{\mathbf{V}}$, where $\overline{\mathbf{w}}$ is a constant vector.	6
	d)	If $\phi =$	$x^3 + y^3 + z^3 - 3xyz$. Find div grad ϕ and curl grad ϕ .	6
			UNIT - II	
2.	a)	Prove t i)	hat $f(x, y) \ge 0$ on $R \Longrightarrow \iint_{R} f(x, y) dA \ge 0$	6
		ii)	$f(x,y) \le g(x,y) \Rightarrow \iint_{R} f(x,y) dA \le \iint_{R} g(x,y) dA$	
	b)	Evalue	at $\int_{0}^{\pi/2} \int_{0}^{2a \cos \theta} r^{2} \sin \theta dr d\theta$	6
			OR	
	c)	Evalua	te $\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration.	6
	d)	Evalua	te by changing to polar co-ordinates.	6
		$\iint_{R} \frac{x}{\sqrt{x^2}}$	$\frac{2}{y}$ dx dy where R is the region defined by $0 \le y \le x, 0 \le x \le y$	a

UNIT - III

3.	a)	Find the co-ordinates of the centre and the radius of the circle	6
		$x+2y+2z=15; x^2+y^2+z^2-2y-4z=11.$	
	b)	Find the equation of a sphere for which the circle	6
		$x^{2} + y^{2} + z^{2} + 7y - 2z + 2 = 0; 2x + 3y + 4z = 8 is a great circle.$	
	-)	OR	(
	C)	Find the equation of the cone whose vertex is the point $(1,2,3)$ and the guiding curve is the	0
	d)	CITCLE $X + y + z = 4$; $X + y + z = 1$. Prove that every homogeneous equations of second degree in $x - y$ and z represents a cone	6
	u)	whose vertex is at the origin.	U
		UNIT - IV	
4.	a)	From the equation $y_n = A.3^n + B.5^n$, derive a difference equation by eliminating	6
		arbitrary constants A and B.	
	b)	Solve $y_{1,2} = y_{1,1} + y_1 = 0$ $k \ge 0$ Given that $y_0 = 1$ $y_1 = \frac{1 + \sqrt{3}}{3}$	6
		Solve $y_{k+2} = y_{k+1} + y_k = 0$, $k = 0$, or call that $y_0 = 1$, $y_1 = 2$	
		OR	
	c)	Solve difference equation.	6
		$y_{n+2} + 3y_{n+1} + 2y_n = 2^n$, given $y_0 = 0$, $y_1 = 1$	
	d)	Solve $y_{n+2} - 2y_{n+1} + y_n = n^2 \cdot 2^n$	6
5.		Solve any six.	
5.	a)	Find volume of a parallelepiped with $\overline{a} = (1 \ 0 \ 2)$ $\overline{b} = (0 \ 3 \ 1)$ $\overline{c} = (2 \ 2 \ 0)$ as edge	2
	,	vectors.	
	b)	If $\overline{f} = \sin t \overline{i} + \cos t \overline{j}$, $\overline{g} = t \overline{i} + t^2 \overline{j} - t^3 \overline{k}$	2
		find $d(\overline{f},\overline{a})$ at $t=0$	
	``	$\frac{dt}{dt} = 0$	•
	c)	Prove that $ \iint_{\mathbf{P}} f(\mathbf{x}, \mathbf{y}) d\mathbf{A} \leq \iint_{\mathbf{P}} f(\mathbf{x}, \mathbf{y}) d\mathbf{A}$	2
		Where $f(x, y)$ is continuous function.	
	d)	$\int_{1}^{1} \int_{1}^{3} xy^{2} dy dx$	2
		$\begin{array}{c} 1 \\ 0 \\ 1 \end{array}$	
	e)	Find equation of sphere with centre $(1, -1, 2)$ and radius 3.	2
	f)	Find the equation of cone with vertex at the origin and direction cosines of its generator 2	2
	-)	satisfying the relation $3l^2 - 4m^2 + 5n^2 = 0$.	2
	g)	Solve $y_{n+3} - 2y_{n+2} - 5y_{n+1} + 6y_n = 0$	2
	n)	Prove that if $V(n) = a^n$ then particular integral is $\frac{1}{P(E)}a^n = \frac{1}{P(a)}a^n$ provided	2
		P(a)≠0.	
