Bachelor of Science (B.Sc.) (Part – I) Second Semester Old 2SChe-T2 – Chemistry Paper – II (Physical Chemistry)

P. F Tin	Pages : ne : Th	GUG/ arree Hours GUG/ Max	W/18/1233 x. Marks : 50
	Note	 es: 1. All five questions are compulsory and carry equal marks. 2. Draw diagrams and give equations wherever necessary. 	
1.	a)	Calculate using log table : $\frac{0.0518 \times (4.68)^2}{0.0055 \times 1.23 \times (23)^{1/2}}.$	5
	b)	Discuss Bohr – Wheeler theory of nuclear fission. Explain any two medicinal applie of radioisotopes.	cations 5
		OR	
	c)	Find the equation of line passing through the points $P(1,-1)$ and $Q(6,6)$ write slop y – intercept of this line.	be and $2^{1/2}$
	d)	The collision frequency of a gas is 3.222×10^{32} cm ⁻³ / hour. Convert it into SI unit.	21/2
	e)	Explain shell model of nucleus.	2 ¹ / ₂
	f)	Define mass defect and binding energy of nucleus. Calculate B.E. per nucleon for if its mass detect is 0.5358 amu.	³⁹ ₇₇ Co, 2 ¹ / ₂
2.	a)	What are the postulates of kinetic theory of gases? State and deduce Avogadro's La from the kinetic gas equation.	w 5
	b)	Starting with Van der Waals equation of state, derive reduced equation of state. Write its significance. State the law of corresponding states.	5
		OR	
	c)	Critical temperature and critical density of CO_2 gas are 304 K and 0.45 g cm ⁻³	$2^{1/2}$
		respectively. Calculate Van der Waals constants for the gas. ($R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)
	d)	Explain the deviations of real gases from ideal behaviours.	21/2
	e)	Define mean free path. Explain its variation with pressure and temperature.	21/2
	f)	Calculate RMS velocity of hydrogen gas at N.T.P. ($R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)	21/2
3.	a)	Discuss the structural difference between solid, liquid and gaseous state? Explain kine molecular theory for liquids.	inetic 5
	b)	Define surface tension. Describe drop number method for the determination of surface tension.	ace 5
		OR	

	c)	Define liquid crystals. Discuss nematic liquid crystal.	21/2
	d)	Explain seven segment cell and role of liquid crystals in it.	21/2
	e)	Define : i) Relative Viscosity and ii) Intrinsic Viscosity Explain the effect of temperature on viscosity.	21/2
	f)	What is refractive index? Calculate the molar refraction of carbon tetrachloride if its density is 1.595 gcm ⁻³ and refractive index for D – line of sodium is 1.4573 (mol.wt of $CCl_4 = 154$.)	21/2
4.	a)	What is second order reaction? Derive integrated rate expression for rate constant of second order reaction when initial concentrations of reactants are same.	5
	b)	Define Catalysis. Explain homogeneous and heterogeneous catalysis with suitable examples. Give the characteristics of catalyst.	5
		OR	
	c)	Describe half life period method for the determination of order of reaction.	21/2
	d)	For a reaction $A \rightarrow B$, the rate constants are 1.11mol ⁻¹ s at 550°C and 6.41mol ⁻¹ s at	21/2
		625°C. Calculate the energy of activation for this reaction. ($R = 8.314 \text{ JK}^{-1} \text{ mol}^{-1}$)	
	e)	Discuss Transition state theory of reaction rates?	21/2
	f)	Derive Eyring equation for rate constant.	21/2
5.		Attempt any ten.	10
		i) Differentiate $2x^3 - 8x^2 + 12x - 10$ w.r.t.x.	
		ii) Define permutation and find ${}^{6}P_{4}$	
		iii) Give any two limitations of liquid drop model.	
		iv) Write an expression for Maxwell's distribution law of molecular velocities.	
		v) Define collision number and collision diameter.	
		vi) What is compressibility factor?	
		vii) Draw well labelled diagram of Ostwald Viscometer.	
		viii) Define Thermography.	
		ix) What is Parachor value?	
		x) Define steric effect.	
		xi) Explain autocatalysis with suitable example.	
		xii) What is pseudo – unimolecular reaction give one example?	

GUG/W/18/1233