Bachelor of Science (B.Sc.) First Semester **1S-PHY 101 - Physics Paper-I (Mechanics and Oscillations)**

P. Pages : 3 Time : Three Hours				GUG/W/18/1218 Max. Marks : 50	
	Not		 All questions are compulsory. Draw neat labelled diagram whenever necessary. 		
1.	Either				
	a)	i)	State Newton's laws of motion. Show that Newton's first law of motion is simply a special case of second law. Also discuss the limitations of Newton's laws of motion.	5	
		ii)	A particle is moving along a curve in a plane. Derive an expression for the radial and transverse components of velocity.	3	
		iii)	A point moving in a plane has co-ordinates x=3, y=4 and has components of speed $\dot{x} = 5 \text{ m/sec}$. and $\dot{y} = 8 \text{ m/sec}$. at some instant of time. Find the components of	2	
			speed in polar co-ordinators r, θ along directions \hat{r} and $\hat{\theta}$.		
			OR		
	b)	i)	Explain the termsa) Gravitational field.b) Gravitational intensityc) Gravitational potential	3	
		ii)	 Derive an expression for gravitational potential and intensity due to thin spherical shell at a point, a) Outside the shell b) On the surface of shell c) Inside the shell. 	5	
		iii)	What will be the gravitational potential and intensity of a thin spherical shell of mass 10 kg and radius 0.1m at a point 0.2m outside its surface Given : $G = 6.67 \times 10^{-11} \text{ Nm}^2 / \text{kg}^2$.	2	
2.	Either				
	a)	i)	Define simple harmonic motion. Derive general differential equation of a simple harmonic oscillator and also obtain its solution.	6	
		ii)	Obtain the resultant of two S.H.M.s of same period executing in the same direction but differing in phase and amplitude.	2	
		iii)	Show that the number of beats produced is equal to the difference in the frequencies of the two sounding bodies.	2	

b)	i)	What are damped vibrations. Establish the differential equation of motion for a damped harmonic oscillator and obtain an expression for displacement Discuss the case of underdamping $(k < w_0)$.	6					
	ii)	Obtain an expression for quality factor of damped harmonic oscillator.	2					
	iii)	Calculate the band width of an acoustic system having Q=1.75 and resonant frequency 280 Hz.	2					
Either								
a)		tinguish between inertial and non-inertial frame of reference. Give the example of h. Is earth inertial frame? Why?	21/2					
b)		at is linear momentum. State and explain the principle of conservation of linear mentum with examples.	21/2					
c)		d the expression for resultant motion of a particle subjected simultaneously to two .M.s of same period but of different amplitudes and phases in perpendicular directions.	21/2					
d)	Wh	at is sharpness of resonance? Explain the effect of damping on sharpness of resonance.	21/2					
		OR						
e)	Stat	te kepler's laws of planetary motion.	21/2					
f)		w that velocity of centre of mass of a system remains constant if no external force is lied on it.	21/2					
g)	Cal 5cm	culate the radius of guration of a solid sphere rotating about its diameter if its radius is	21/2					
h)		we that in driven oscillator, the maximum power is absorbed at the frequency of ocity resonance and not at the frequency of amplitude resonance.	21/2					
Eith	er							
a)		d the maximum speed of a body of mass 2kg revolving in a circular path of radius 2m, ne centripetal force of 400N applied towards the centre of Girde.	21/2					
b)	Sho	w that torque is the time rate of change of angular momentum.	21/2					
c)		ain an expression for the resultant of two S.H.M.s perpendicular to each other having erent amplitudes and phases and having frequencies in the ratio 1:2.	21/2					
d)		at is forced harmonic oscillator. Derive differential equation of forced harmonic illator.	21/2					

OR

OR

2

3.

4.

e)	Wh	hat are central and non-central forces? Give three characteristics of each.		
f)	Two bodies of masses 2g and 10g have position vectors $3\hat{i} + 2\hat{j} + \hat{k}$ and $\hat{i} - \hat{j} + 3\hat{k}$ respectively. Find the position vectors and distance of centre of mass from the origin.			
g)	Giv	e physical significance of moment of inertia.	21/2	
h)	Sho	w that average power dissipation in damped harmonic oscillator is 2bE.	21/2	
	Atte	empt any ten from the following.		
	a)	Give two examples each of central and non-central force.	1	
	b)	What is conservative force.	1	
	c)	Define centripetal force.	1	
	d)	Define centre of mass.	1	
	e)	What is radius of gyration.	1	
	f)	State law of conservation of angular momentum.	1	
	g)	What are Lissajous figures.	1	
	h)	What are beats.	1	
	i)	State principle of perpendicular axes for M.I.	1	
	j)	Define quality factor of damped harmonic oscillator.	1	
	k)	Give two examples each of damped and forced harmonic oscillator.	1	
	l)	Define band width.	1	

5.