Bachelor of Science (B.Sc.) First Semester Old Course MAT 101 - Mathematics Paper – I – (Algebra and Trigonometry)

P. Pages : 2 Time : Three Hours			GUG/V ★ 0 9 2 7 ★ Max	GUG/W/18/1214 Max. Marks : 60	
	Note	es: 1. S 2. E	olve all five questions. Each question carries equal marks.		
			UNIT – I		
1.	a)	Prove that Hence pro	$\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta} = \sin\theta+i\cos\theta$ ove that	6	
		$\left(1+s\right)$	$\sin\frac{\pi}{5} + i\cos\frac{\pi}{5}\right)^3 + \left(1 + \sin\frac{\pi}{5} - i\cos\frac{\pi}{5}\right)^3 = 0$		
	b)	Prove that sin 6	$\theta = 6\cos^5 \theta \sin \theta - 20\cos^3 \theta \sin^3 \theta + 6\cos \theta \sin^5 \theta$	6	
			OR		
	c)	Separate i	nto real and imaginary parts of $tan h(x+iy)$.	6	
	d)	If $\sin(\theta +$	$i\phi$) = cos α + i sin α . Prove that cos ² θ = ± sin α .	6	
			UNIT – II		
2.	a)	For the ma	atrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 3 \\ 0 & -1 & -1 \end{bmatrix}$, find non singular matrices P and Q such that PAQ	6 is in	
		the norma	l form.		
	b)	Solve the	linear equations $2x+3y-z=0$, $x-y+2z=5$, $3x+y-z=1$ by matrix me	thod. 6	
			OR		
	c)	Show that	if B be an invertible matrix of the same order as A, then the matrices A an	d 6	

- $B^{-1} \cdot A \cdot B$ have the same characteristic roots.
- d) Find the characteristic equation of the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and verify Cayley Hamilton theorem for the matrix. Hence or otherwise express $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10I$ as linear polynomial in A.

UNIT – III

3.	a)	Pro	ve that every equation of degree n has n roots and no more.	6				
	b)	Solv prog	we the following equation $6x^3 - 11x^2 - 3x + 2 = 0$, the roots being in harmonic gression.	6				
		OR						
	c)	$\frac{\text{Sho}}{x^4}$	w that the same transformation removes both 2^{nd} and 4^{th} terms of the equation $+16x^3 + 83x^2 + 152x + 84 = 0$.	6				
	d)	Solve by Cardon's method $x^3 - 21x = 344$.		6				
			UNIT – IV					
4.	a)	Use	Use the first principle of induction to prove the following					
		1 ² +	$-2^{2}+3^{3}++n^{2} = \frac{1}{6}n(n+1)(2n+1), \forall n \in \mathbb{N}$					
	b)	Let	$\frac{a}{b}$ and $\frac{c}{d}$ be fractions in lowest terms so that $(a,b) = (c,d) = 1$.	6				
		Pro	ve that if their sum is an integer, then $ b = d $.					
		OR						
	c)	Find the gcd of 275 and 200 and express it in the form 275m + 200n.		6				
	d)	Find positive integers a and b satisfying the equations $(a, b) = 10$ and $[a, b] = 100$ simultaneously. Find all solutions.		6				
5.		Solve any six.						
		a)	State De Moivre's Theorem.	2				
		b)	Separate $sin(x+iy)$ into real and imaginary parts.	2				
		c)	Define transpose of a matrix.	2				
		d)	Show that if λ is the eigenvalue of a non singular matrix A, then λ^{-1} is the eigenvalue of A^{-1} .	2				
		e)	Find the nature of the roots of the equation $3x^4 + 12x^2 + 5x - 4 = 0$.	2				
		f)	Determine the values of $\Sigma \alpha^2$ for the cubic equation $x^3 + px^2 + qx + r = 0$ whose roots are α, β, γ .	2				
		g)	Prove that $(a, a+k) k$ for all integers a, k not both zero.	2				
		h)	Evaluate $(n, n+1)$, where $n \in N$.	2				
