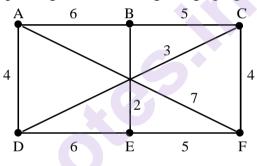

Bachelor of Computer Application (B.C.A.-II) (CBCS) Third Semester CBCS UBCAT305 - Discrete Mathematics Paper - V

	ages : e : Th	2 ree Hours $* 3 8 3 7 *$	GUG/W/18/11761 Max. Marks : 40
	Note	 es: 1. All the questions are compulsory and carry equal marks. 2. Draw neat and labelled diagram wherever necessary. 3. Avoid vague answers and write the answers relevant and specific 	c to questions only.
1.		Either	
	a)	Let $A = \{a, b, c, d, e\}$ $B = \{c, e, f, h, k, m\}$ verify $ A \cup B = A + B - A \cap B $	4
	b)	Let a, b and c be integers - i) If a/b and a/c then a/(b + c) ii) If a/b or a/c then a/bc	4
		OR	
	c)	Prove the following Demorgan's law using truth table - i) $\sim (p \lor q) \equiv \sim p \land \sim q$ ii) $\sim (p \land q) \equiv \sim p \lor \sim q$	4
	d)	If $\begin{bmatrix} a+b & c+d \\ c-d & a-b \end{bmatrix} = \begin{bmatrix} 4 & 6 \\ 10 & 2 \end{bmatrix}$ find a, b, c and d.	4
2.		Either	
	a)	Prove that, $p(n, r) = n.p(n-1, r-1)$	4
	b)	Determine whether the following permutation is odd or even $P = \begin{pmatrix} a & b & c & d & e & f & g & h \\ b & c & a & e & f & d & h & g \end{pmatrix}$	4
OR			
	c)	Determine the value of 'n' i) ${}^{n}C_{4} = {}^{n}C_{3}$ ii) ${}^{n}C_{n-2} = 10$	4
	d)	Explain various types of functions, with example.	4

3. Either


a) Show that following graph are isomorphic.

b) Construct the tree $((3*(1-x)) \div ((4+(7-(y+2)))*(7+(z \div y)))$

OR

- c) What is Hamiltonian paths and circuits ? Explain with example.
- d) Determine the minimum spanning tree of the weighted graph given below.

4. Either

- a) Let (A, *) be semigroup. Show that for a, b, c in A, if a * c = c * a and b * c = c * b then (a*b)*c=c*(a*b)
- b) Let G is the set of all non-zero real numbers and * is a binary operation defined by $a * b = \frac{ab}{4}$ show that (G, *) is an abelian group.

OR

c) Define the following :
i) Semigroup
ii) Monoid
ii) Subgroup
iv) Isomorphism

d) Write and explain any 2 properties of binary operation.

5. Solve all the questions :

- a) Let $A = \{a, b, c, d\}$ and $B = \{a, c, e, f, g\}$ find $A \oplus B$ and A B.
- b) Find the value of ${}^{10}C_6$
- c) Define Euler path and circuit.
 - d) Write in short about normal subgroup.

4

Δ

4

4

2

2

2

2

4