P. Pages : 2 USMT-05 - Mathematics Paper-I : Real Analysis GUG/W/18/11612			
Time : Three Hours		* 3 8 6 7 *	Max. Marks : 60
No		Solve all five questions. Each question carries equal marks.	
、 、		UNIT - I	
• a)	Prove that	t if lim S_n exists, it must be unique.	(
b)	Find the l	limit of sequence $\langle S_n \rangle$, where $\langle S_n \rangle = \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \frac{1}{(n+2)^2}$	$-\frac{1}{\left(n+n\right)^2}$
	Duorro tha	OR	
c)	Prove tha	t every convergent sequence of real numbers is a Cauchy s	sequence.
d)			(
	$\lim_{n\to\infty} \left\lfloor \frac{1}{\sqrt{2}} \right\rfloor$	$\frac{1}{n^2+1} + \frac{1}{\sqrt{n^2+2}} + \dots + \frac{1}{\sqrt{n^2+n}} = 1$	
		UNIT – II	
a)	Prove that	It the series Σx_n converges if and only if for every $\in > 0 \exists$	a number $M(\in) \in N$
	such that $m \ge n \ge N$	$\mathbf{M} \Longrightarrow / \mathbf{x}_{n+1} + \mathbf{x}_{n+2} + \dots + \mathbf{x}_m / < \epsilon$	
b)	Prove that	at a geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges to $\frac{1}{1-x}$ for $0 < x$	< 1 and diverges for
	$x \ge 1$.	OR	
c)	Let $x_n \ge$	0, $y_n \ge 0 \ \forall n \in N$ and let $\exists m \in N$ such that	
	$x_n \le k y_r$	$_{1}$ $\forall n \ge m, k > 0$, then show that	
	i) Σy _n	converges $\Rightarrow \Sigma x_n$ converges	
	ii) Σx _n	diverges $\Rightarrow \Sigma y_n$ diverges	
d)		Iternating series and test the convergence of series + $\frac{1}{5.6} - \frac{1}{7.8} + \dots$	
		UNIT – III	
a)	Show that	t $d(x,y) = x-y \forall x, y \in R$ defines a metric on R.	
b)	Show tha	t every neighbourhood is an open set.	

OR

c) Let $\{A_{\alpha}\}$ be a finite or infinite collection of sets A_{α} . Then prove that

$$\left[\bigcup_{\alpha} A_{\alpha}\right]^{C} = \bigcap_{\alpha} A_{\alpha}^{C}$$

d) Prove that every convergent sequence in a metric space is a Cauchy sequence.

UNIT – IV

6

6

6

6

- **4.** a) Show that any constant function defined on a bounded closed interval is integrable.
 - b) If f is a bounded and integrable over [a, b] and M, m are bounds of f over [a, b], then for prove that 6

$$m(b-a) \leq \int_{a}^{b} f(x) dx \leq m(b-a)$$

c) Let a function f be continuous and non-negative on the interval [a, b]. Prove that $F(x) = \int_{a}^{x} f(t) dt, x \in [a, b]$ is monotonic non-decreasing in [a, b].

OR

d) Prove that if f be a bounded and integrable function defined on [a, b] with m, M as infimum, 6 supremum respectively, then there exists a number μ between m and M such that

$$\int_{a}^{b} f(x) dx = \mu(b-a)$$

5. Solve any six.

Prove that $\lim_{n \to \infty} \frac{1}{n^2} = 0$ 2 a) Evaluate $\lim S_n$ for the sequence 2 b) $S_n = \sqrt{n+a} - \sqrt{n+b}, a \exists b$ Test the convergence of series by using P-series test 2 c) $\sum \frac{1}{\sqrt{n}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots$ Test for the convergence of the series 2 d) $\sum \left(\frac{n}{n+1}\right)^{n^2}$ Define metric. 2 e) Define open set. 2 f) Define Darboux's upper & lower sums. 2 g) h) Prove that 2 $m(b-a) \leq L(p,f) \leq U(p,f) \leq M(b-a)$ *****

GUG/W/18/11612