Bachelor of Science (B.Sc.) (CBCS Pattern) Second Semester CBCS (New)

USCCHT04 - Chemistry Paper-II (Physical Chemistry)

	ages : e : Thi	2 ree Hours **3 6 5 0 * GUG/W/18/1157 Max. Marks :	
1.	a)	Find the minimum and maximum value of $x^3 - 12x + 10$.	5
	b)	Define solubility and solubility product Give it's relationships.	5
		The solubility of BaSO ₄ is 2.33×10^{-4} g/ml at 20°C. Calculate the solubility product of	
		BaSO ₄ assuming that the salt is completely ionised. OR	
		OR	
	c)	Calculate the pH of $0.020M$ Ba $\left(OH\right)_2$ solution.	21/2
	d)	Write a note on common-ion effect.	21/2
	e)	The density of vanadium is 5.96 g cm ⁻³ convert this unit into SI unit.	21/2
	f)	What do you mean by permutation and combinations.	21/2
2.	a)	Explain Carnot cycle. Derive the expression for efficiency of Carnot heat engine working between the temperatures T_1 and T_2 .	5
	b)	State and explain Hess's law of constant heat summation. Calculate the heat of formation of carbon monoxide from the following data:	5
		i) $C_{(S)} + O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -393. \text{kJ} \cdot \text{mol}^{-1}$	
		ii) $CO_{(g)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{2(g)} \Delta H = -282 \text{ kJmol}^{-1}.$	
		OR	
	c)	1	21/2
	d)		21/2
	e)	Define: i) Isolated System ii) State function	21/2
		iii) Isothermal Process iv) Isobaric Process	
	f)	v) Work Define intensive and extensive properties. Give one example of each.	21/2
_			
3.	a)	Write kinetic gas equation. Derive Avogadro's law and Graham's law of diffusion from it.	5
	b)	Derive Vander Walls equation of state.	5
		OR	
	c)	Explain with graph the effect of temperature on the distribution of molecular velocities.	21/2
	d)		21/2
	a)	molecule of oxygen at 0°C. What are the causes of deviations from ideal behavior.	21/2
	e) f)		$\frac{2^{1/2}}{2^{1/2}}$
	-/	respectively. Calculate Vander Wall's constants.	_, _
		$(R = 0.0821 \text{ lit} \cdot \text{atm} \cdot \text{deg}^{-1} \text{ mol}^{-1}).$	

- 4. a) Explain drop number method for determination of surface tension.
 In a drop number method, the number of drop of ethanol falling through stalagmometer are 714 while that of water are 300 at 25°C Calculate surface tension of ethanol if that of water is 72·75×10⁻³ N/m.

 (Given- Density of water = 0·9980×10³ kg m⁻³ & Density of
 - ethanol = $0.7894 \times 10^3 \text{kg m}^{-3}$).
 - b) What do you understand by crystallography. Explain:
 - i) Law of constancy of interfacial angles.
 - ii) Law of rationality of indices.

OR

- c) Derive Bragg's equation.
- d) What is coefficient of viscosity? Explain the effect of temperature on viscosity. 2½
- e) Why is the Bragg's method unable to show that kcl has F.C.C. crystal structure like Nacl. 2½
- d) A crystal plane cuts the x-axis & y-axis at unit distance and it is parallel to z-axis what are 2½ it's Miller Indices?
- 5. Attempt any ten.

10

5

5

 $2^{1/2}$

- i) What is Buffer solution.
- ii) Find the slope of line whose x and y intercepts are 3 and -9 respectively.
- iii) State ostwald dilution law.
- iv) Define Inversion Temperature.
- v) What are standard state conditions.
- vi) Define collision diameter and collision number.
- vii) What is heat of reaction. Give the relation between heat of reaction at constant pressure and constant volume.
- viii) State law of corresponding state.
- ix) Define compressibility factor.
- x) Give the relation between surface tension and Parachor.
- xi) Draw unit cell of CsCl
- xii) Identify the crystal system Relative axis length - $a \ne b \ne c$ Interfacial angles - $\alpha \ne \beta \ne c \ne 90^{\circ}$.
