Bachelor of Science (F.Y.BSc.) (CBCS Pattern) First Semester ## **USPHT01 - Physics Paper-I** (Mechanics and Relativity) | | | | <u>-</u> | | | |-------------------------------|----|---------|--|-----------------------------------|------| | P. Pages: 3 Time: Three Hours | | | | GUG/W/18/11560
Max. Marks : 50 | | |
1. | | Eith | ner: | | | | | A) | i) | State Newton's laws of motion. | | 3 | | | | ii) | Show that Newton's first law of motion is simply a special case of t Discuss the limitations of Newton's laws of motion. | he second law. | 3 | | | | iii) | Distinguish between inertial and non-inertial frames of reference. | | 2 | | | | iv) | Two bodies of masses 2gm and 10gm have position vectors $\begin{pmatrix} \rightarrow & \rightarrow & \rightarrow \\ 3 & i+2 & j-k \end{pmatrix}$ and $\begin{pmatrix} \rightarrow & \rightarrow & \rightarrow \\ i+j+3 & k \end{pmatrix}$. Find the position vectors and the distance of centre of mass from the or | rigin. | 2 | | | | | OR | | | | | B) | a) | Derive equation of motion of centre of mass. | | 21/2 | | | | b) | Two particles of masses m_1 and m_2 and positions vectors r_1 and r_2 and r_3 and r_4 and r_5 and r_6 and r_7 and r_8 are r_8 and r_9 and r_9 are are r_9 and r_9 are r_9 and r_9 are are r_9 are r_9 and r_9 are r_9 are r_9 and r_9 are and r_9 are r_9 are r_9 are r_9 and r_9 are $r_$ | re moving with | 21/2 | | | | | velocities v_1 and v_2 respectively. Obtain expression for velocity and v_2 | | | | | | c) | Obtain expression for radial and transverse component of velocity. | | 21/2 | | | | d) | The path of projectile is given by an equation $3t^2 - \frac{t^2}{20}$ Meter. Find the acceleration after the time of 10 sec. | e velocity and | 21/2 | | 2. | | Either: | | | | | | A) | i) | Discuss the phenomenon of Collision in one dimension between two the Collision is elastic. Hence find velocities after collision. | particles when | 6 | | | | ii) | When masses of colliding particle are same and when one of the particle rest. | le is initially at | 2 | | | | iii) | A gun of mass 10kg fires a bullet of 100gm with a velocity 1500cm/s. Fwith which gun is recoiled. | ind the velocity | 2 | OR | | В) | a) | State and prove law of conservation of linear momentum. | $2^{1/2}$ | | | | |----|----|---|---|-----------|--|--|--| | | | b) | State and prove the work-energy principle. | 21/2 | | | | | | | c) Explain the terms elastic and inelastic collision. With examples. | | | | | | | | | d) | If the two bodies having masses 10kg and 8kg and their respective initial velocities are 5 m/sec. and 6m/sec. Find the final velocities of the two bodies after elastic collision in one dimension. | 21/2 | | | | | 3. | | Eith | ner: | | | | | | | A) | i) | Derive an expression for moment of inertia of a rod about an axis passing through: i) its centre ii) One end perpendicular to its length | 6 | | | | | | | ii) | Explain the terms: a) Angular Velocity b) Angular momentum State its SI Units. | 2 | | | | | | | iii) | Calculate the radius of gyration of a solid sphere rotating about its diameter where radius is 5cm. | 2 | | | | | | | | OR | | | | | | | B) | a) | Explain isotropy and rotational invariance of space. | 21/2 | | | | | | | b) | Show that angular momentum of a particle remains conserved in the absence of an external torque. | 21/2 | | | | | | | c) State the principle of perpendicular and parallel axes for moment of inertia. Given mathematical equations. | | | | | | | | | d) A thin uniform rod of mass 1Kg and length 1m is rotating about an axis passing its centre and perpendicular to its length. Calculate M. I. Also calculate radius of Gyration. | | | | | | | 4. | | Eith | ner: | | | | | | | A) | i) | Derive Einstein's relativistic velocity addition formula. | 6 | | | | | | | ii) | Prove that it is in confirmly with the principle of constancy of speed of light. | 2 | | | | | | | iii) | A Rocket of rest mass 8000kg is travelling with a velocity of 0.6C. Find the relativistic mass. | 2 | | | | | | | | OR | | | | | | | B) | a) | Derive an expression for time dilation. | 21/2 | | | | | | | b) | Obtain the relation, $E = \sqrt{p^2c^2 + m_0^2c^4}$. | 21/2 | | | | | | c) | Derive an expression for length construction. | 21/2 | |----|-----|---|------| | | d) | An object in motion has a mass of a 12kg and travels in air with velocity 0.82C. What would be its rest mass? | 21/2 | | 5. | Att | empt any ten questions from the followings. | | | | a) | What is frame of reference? | 1 | | | b) | Define centripetal force | 1 | | | c) | Write the names of forces acting on a moving particle in rotating frame. | 1 | | | d) | Name the fuel used in the rocket. | 1 | | | e) | What are the applications of elastic collision. | 1 | | | f) | State the principle of multistage rocket. | 1 | | | g) | What is torque. | 1 | | | h) | Define angular impulse. | 1 | | | i) | Write the relation between τ and L. | 1 | | | j) | Write the Lorentz transformation equations. | 1 | | | k) | What is meant by proper time? | 1 | | | 1) | What are the postulates of special theory of relativity. | 1 | *******