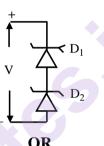

B.E. Electrical (Electronics & Power) Engineering / Electronics Engineering / Electronics & Telecommunication / Comm. Engineering (CBCS Pattern) Third Semester CBCS (New) **3BEEE04 / 3BEEN02 / 3BEET03 : Electronics Devices & Circuits**

P. Pages : 3 Time : Three Hours	* 3 5 7 4 *	GUG/W/18/11489 Max. Marks : 80
Notes : 1.	All questions carry marks as indicated.	

- 2. Due credit will be given to neatness and adequate dimensions.
- 3. Assume suitable data wherever necessary.
- Derive the V I relationship of P N Junction diode. 1. a)
 - The saturation currents of two Zener diodes in the circuit are 1µA and 2µA respectively. 8 b) The break down voltages of the diodes are same and equal to 100V. Calculate the current and voltage of each diode if $V_i = 90V \& V_i = 110V$.

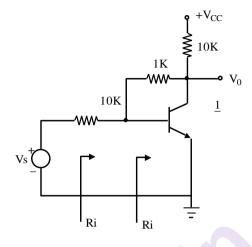
- Explain how depletion layer is formed across P N Junction. Define barrier potential? 2. a)
 - Explain Zener diode as voltage regulator. b)
 - A, 120V, 60Hz voltage is applied to primary of 5:1 step-down transformer whose secondary 8 c) is centre-tapped allowing a load of $1K\Omega$ be connected to a full-wave rectifier utilizing two diodes. Neglecting voltage drop across two diodes. Determine :
 - The d.c. voltage across the load. i)
 - d.c. current through the load. ii)
 - iii) % efficiency.
 - iv) PIV of each diode.
- 3. a) Explain Base – Width modulation in BJT.
 - For the ckt shown in fig. b)


Show that Q is working in Saturation region. Also find currents.

4

4

4

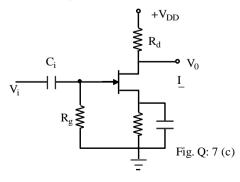

8

c) What is mean by biasing? Why there is need of biasing? Explain.

OR

- 4. a) Derive the hybrid parameters for. C E configuration and draw the hybrid model.
 - b) For the ckt shown in fig. Find AI & Avs.

- 5. a) Define thermal resistance & Derive the expression for condition of thermal stability in self 8 bias ckt.
 - b) A Si- transistor with $\beta = 50$, $V_{BE(act)} = 0.7V$, $V_{CC} = 22.5V \& R_C = 5.6 K\Omega$ is used in voltage divider bias ckt. It is desired to establish Q. pt. at $V_{CE} = 12V \& I_C = 1.5 \text{ mA}$. For stability factor $S \le 3$, find R_1 , R_2 , $\& R_e$.

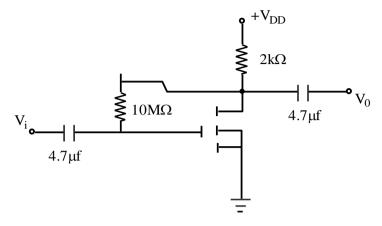

OR

- 6. a) Draw the hybrid π model of BJT in C E connection & derive the expression for current 8 gain.
 - b) A BJT has $g_m = 25m$, $rb'_e = 4.9$ K, $h_{ie} = 5\Omega$, $rbb' = 100\Omega$, $cb'_c = 10$ pf, $cb'_e = 60$ pf and $h_{fe} = 224$ at 1KHz. Calculate α and β cut-off frequencies and f_T .

7. a) Differentiate between MOSFET and JFET.4b) For JFET, if
$$I_{DSS} = 20 \text{mA}$$
, $V_{GS(off)} = -5 \text{V}$ and $g_{mo} = 4 \text{ mS}$.4

Determine transconductance for $V_{gs} = -4V$ and I_D at that point.

c) The amplifier shown has $V_P = -2V$, $I_{DSS} = 1.65 \text{ mA}$. It is desired to bias the ckt at $I_D = 0.8 \text{ mA}$ using $V_{DD} = 24 \text{ V}$. Assume rd >> Rd, find V_{gs} , g_m , $R_s \& R_d$ such that the voltage gain is at least 60 dB with R_s by passed with very large capacitance.



8

8

8

- **8.** a) Explain the effect of temperature in MOSFEET with neat waveform.
 - b) For the ckt shown below given that $I_{D(ON)} = 6 \text{ mA}$, $V_{GS(ON)} = 8V$, $V_{gs(th)} = 3V$. Calculate the values of I_D and V_{GS} at Q – point.

- 9. a) Draw the ckt of class B-push-pull amplifier. Obtain the condition for maximum power dissipation and hence show that $P_{c(max)} = 0.4 P_{o(max)}$.
 - b) A transistor supplies 1W to 5KΩ load. A zero signal d.c. collector current is 35 mA and d.c. collector current with signal is 40 mA. Determine % second harmonic distortion.

OR

- **10.** a) With neat ckt diagram, explain transformer, coupled class A push-pull Amplifier, how removes the problem of core saturation and eliminate even harmonics completely.
 - b) Class B push pull amplifier is supplied with $V_{CC} = 60V$ and signal to collector voltage down to $V_{min} = 15V$. The dissipation in both transistor totals 45W. Find :
 - i) Load presented by O/P transformer.
 - ii) Conversion efficiency.
 - iii) Ratings of each transistor.

8

8

8

8

8