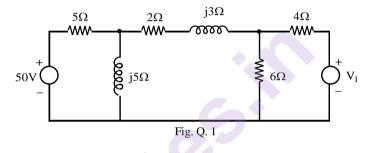
B.E. Electrical (Electronics & Power) Engineering / Electronics Engineering / Electronics & Telecommunication / Communication Engineering (CBCS Pattern) Third Semester CBCS+Old

3BEEE02/3BEEN04/3BEET05/EP 302/EN 303/ET 303

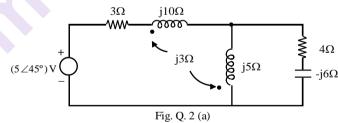
Network Analysis / Network Theory

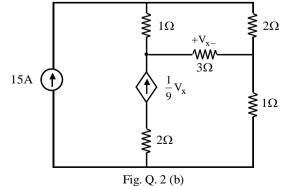

P. Pages: 4

Time : Three Hours

GUG/W/18/11487

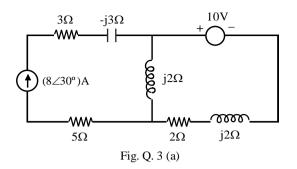
Max. Marks: 80


- Notes : 1. All questions carry equal marks.
 - 2. Assume suitable data wherever necessary.
 - 3. Illustrate your answers wherever necessary with the help of neat sketches.
 - 4. Use of non-programmable electronic calculator is permitted.
- 1. a) In the network of fig. Q. 1, Find the value of source voltage V_1 , which results in zero 8 current through j5 Ω reactance use mesh analysis.

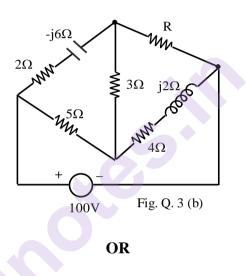

b) In the network of Fig. Q. 1, find the value of source voltage V_1 , which results in current **8** of 1A through j5 Ω reactance. Use nodal analysis.

OR

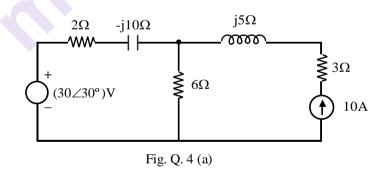
2. a) In the network of Fig. Q. 2(a), find the value of current through 4Ω resistance using mesh **8** analysis.



b) Using nodal analysis, find the value of current through 3Ω resistance in the network of fig. Q. 2(b). 8

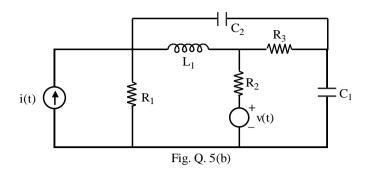


GUG/W/18/11487


3. a) In the network of fig. Q.3 (a), find the value of current through 2Ω resistance using superposition theorem.

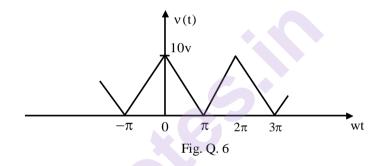
b) In the network of fig. Q.3(b), find the value of resistance R, which will draw maximum **10** power from the network. Also find the value of maximum power.

4. a) Using Thevenin's theorem determine current through 6Ω resistance in the network of fig. **6** Q. 4.


- b) In the network of fig. Q.4, determine current through 6Ω resistance using Norton's theorem. 6
- c) State and prove Millman's theorem.
- 5. a) With the help of example explain.
 - i) Tree
 - ii) Basic cut-set
 - iii) Tie-set.

2

4


8

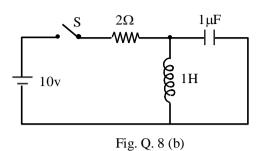
- b) For the network shown in fig. Q.5(b)
 - i) Draw oriented graph & select a tree
 - iii) Write basic cut-set matrix
- ii) Write incidence matrix
- iv) Write tie set matrix.

6. a) Find the trigonometric Fourier series for the triangular even waveform shown in fig. Q. 6. 8

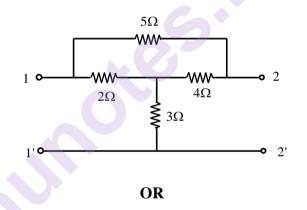
- b) Determine the exponential form of Fourier series expansion for the periodic waveform **8** shown in fig. Q. 6.
- 7. a) For the network function given below, draw the pole-zero diagram and using the pole-zero **8** diagram obtain the time domain response

$$I(s) = \frac{4(s+2)s}{(s+1)(s+3)}$$

b) State the prove final value theorem prove final value theorem for the following functionsi) $6 \cdot (1 - e^{-t})$ ii) $2 + e^{-3t} \cdot \cos 2t$


OR

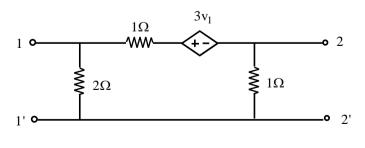
8. a) Find the Laplace Transform of a periodic waveform shown in fig. Q. 8 (a).


v(t) 4v 0 1 2 3 4 5 6 tFig. Q. 8 (a)

8

b) In the network shown in fig. Q8(b), switch S is closed and steady state is reached. Now at t = 0, switch S is opened obtain the expression for current through the inductor at t > 0. Use Laplase transform method.

- 9. a) A network is characterized by the following equations. $I_1 = 0.5 V_1 - 0.25 V_2$ $I_2 = -0.25V_1 + 0.625 V_2$ Determine Z-parameters and ABCD parameters of the network.
 - b) Find short circuit admittance parameters of the Network given in fig. Q.9 (b). Comment 8 on reciprocity and symmetry of the network.



10. a) A 400V, three phase star connected system has phase sequence RBY. The load connected **8** in star has impedances

 $Z_{R} = (30+J40)\Omega$, $Z_{Y} = (6-j10)\Omega$, $Z_{B} = 100\Omega$.

Find line currents. Also calculate the total power consumed by the load.

b) Find hybrid parameters of the network given in fig. 10(b) and hence find Z parameters.8 Comment on reciprocity and symmetry.

8

8