P. Pages : 2 Time : Two Hours				GUG/W/18/ * 3 5 5 7 * Max. Mar						
	Notes	s :	1. 2. 3. 4.	Due credit will be given Assume suitable data wh Illustrate your answers w Use non programmable /	erever new wherever n	cess	ary. ssary with the help of neat sketches.			
	List of			Constants :						
		1.	Pla	anck's constant, $h = 6.63$	$< 10^{-34}$ J.S					
		2.								
	3. Boltzmann constant $k = 1.38 \times 10^{-23} \text{ J/K}$									
		4.	Ch	harge of electron, $e = 1.6 \times$	10^{-19} C					
		5.	Ma	ass of electron, $m = 9.1 \times 1$	0^{-31} kg					
1.	a)	What is thin film? Obtain an expression for fringe width in the interference pattern of wedge-shaped thin film.								
	b)) State any two applications of Newton's Ring. In this experiment why								
		i)	Th	e rings are not equally spa	aced.					
		ii)	Th	e central fringe is dark.						
	c)	Light of wavelength 6000A° falls normally on a thin wedge-shaped film of Refractive Index 1.4, forming fringes that are 2 mm apart. Find the angle of wedge.								
						OF				
2.	a)	What is meant by plane polarized, elliptically polarized and circularly polarized light.						5		
	b)	Explain the term					4			
		i)	Do	ouble refraction	ii)		Optic axis			
		iii)	Po	sitive crystal	iv)	Negative crystal			
	c)	Find the thickness of a quarter wave plate for the wavelength of light of 589 nm and $\mu_0 = 1.55$, $\mu_e = 1.54$.								
3.	a)	Explain how a charged particle describe a helical path in a uniform magnetic field. Obtain an expression for pitch, radius and time period of helix.								
	b)	Ex	plain	in the working of velocity selector.						

c) Electrons are accelerated through a potential difference of 200V and then projected at right 4 angles into a magnetic field of $0.01 \text{ wb}/\text{m}^2$. Calculate the velocity of electron on entering the field and determine the radius of the path.

OR

4.	a)	Draw a block diagram of CRO. What is the function of Trigger Ckt. And Time base Ckt.						
	b)	Explain the principles and working of Bainbridge mass spectrograph.						
	c) An electron passes undeviated through a velocity selector having Electric field in 10^4 V/m and magnetic field is 0.02T. Determine the speed of electron.							
5.	a)	Explain the term	4					
		i) Stimulated emission ii) Pumping						
		iii) Metastable state iv) Population Inversion						
	b)	Explain the principle and working of Ruby Laser with neat energy level diagram.	5					
	c) A typical helium – neon laser emits radiation of $\lambda = 6328$ A.U. How many photon second would be emitted by one milliwatt He-Ne laser.							
	OR							
6.	a)	Explain the term :	4					
		i) Acceptance Cone ii) Critical angle						
		iii) Graded Index Fibre iv) Attenuation						
	b)	Derive the mathematical expression for Numerical Aperture and Acceptance angle for step index fibre.						
	c)	Numerical aperture of a fibre is 0.5 and core R. I. is 1.48. Find cladding R.I. and	4					

Acceptance angle.