B.E - First Year Bachelor of Engineering (CBCS Pattern) First Semester **1BEAB02 - Applied Physics-I**

	ages : 2 le : Two	2 o Hours	GU * 3 5 5 1 *	GUG/W/18/11466 Max. Marks : 40	
	Notes	s: 1. 2. 3. 4.	Due credit will be given to neatness and adequate dimensions. Assume suitable data wherever necessary. Illustrate your answers wherever necessary with the help of neat sket Use of non programmable/scientific calculator permitted.	ches.	_
			List of Constant		
		1) Pl	anck's constant, $h = 6.634 \times 10^{-34} J.S.$		
		2) V	elocity of right, $c = 3 \times 10^8 \text{ m/s}$.		
		3) Be	oltzmann constant, $k = 1.38 \times 10^{-23} \text{ J/K}.$ =8.61x10 ⁻⁵ ev/k.		
		4) C	harge of electron, $e = 1.6 \times 10^{-19} C.$		
		5) M	lass of electron, $m = 9.1 \times 10^{-31} \text{kg}$		
		6) C	harge of α -particle = 3.2 x 10 ⁻¹⁹ C.		
		7) M	Tass of α – particle = 6.68x10 ⁻²⁷ kg.		
1.	a) Using the concept of matter waves, obtain the Bohr's cond momentum.		the concept of matter waves, obtain the Bohr's condition for quantization turn.	on of angular	5
	b)		npton effect, considering elastic collision between a photon and a free e own the equation of energy and momentum conservation.	lectron,	5
	c)		celerating potential of an electron is charged from 1kV to 2kV. Determ in wavelength of an electron.	ine the	4
			OR		
2.	a)	Arrive	at Heisenberg uncertainty principle with the help of simple thought exp	periments.	5
	b)		lown Schrodinger time dependent and time independent wave. Equatio ization condition of wave function.	ns explain	5

 c) A electron is confined to move between two rigid walls separated by 1hm. Find the de-Broglie wavelength representing first allowed energy state of electron and the corresponding energies.

3.	a)	Draw energy band diagram of n-type and p-type semiconductor at ok.					
	b)	In P-N junction diode, what are diffusion current and drift current. Explain the term Barrier potential.					
	c)	14.1mA current flows through a forward biased PN junction at 200mV. Find revese saturation current in the junction at same temperature. Assume junction temperature to be 27°C.					
		OR					
4.	a)	Draw the neat energy band diagram of PNP transistor in. i) Unbiased mode. ii) Biased mode.	4				
	b)	What is Hall effect? Obtain an expression for Hall coefficient.					
	c)	Determine Barrier potential for a germanium junction at room temperature when both n and p region are doped to the extent of one atom per 10^6 germanium atoms. $(n_i = 2.5 \times 10^{19} / \text{m}^3, \text{ N} = 4.4 \times 10^{28} \text{ atoms} / \text{m}^3).$	4				
5.	a)	Define.i)Unit cell.ii)Lattice pointv)Packing fraction.	5				
	b)	What are miller Indices? Draw miller planes for (001), (021), (121) and (102) places for simple cubic structure.	5				
	c)	Chromium has BCC structure. Its atomic radius is 0.1249nm. Calculate the free volume per unit cell.	3				
		OR					
6.	a)	Derive the relation between interplanar distance (d) and miller indices (hkl).	5				
	b)	Explain tetrahedral & octahedral void with the help of diagram.	4				
	``						

c) If x-rays of wavelength 0.5A° are diffracted at an angle of 5° in the first order, what is the spacing between the adjacent planes of the crystal? At what angle will be the second maxima occurs?
