## M.Sc.(Chemistry) (Part - II) (CBCS Pattern) Fourth Semester CBCS PSCHT13 / MSc 2431 - Spectroscopy Paper - XIII

P. Pages: 3

Time : Three Hours

\* 3 5 3 6 \*

GUG/W/18/11448

Max. Marks: 80

Notes: 1. All questions are compulsory

- 2. All questions carry equal marks.
- 3. Use of calculator is allowed.

## UNIT – I

- 1. a) State the principle of Beer-Lambert Law, and explain detail what are the limitations of **8** Beer Lambert Law.
  - b) Explain the Fiesher Woodward rules for dienes? And also calculate the  $\lambda_{max}$  value for the **8** following compounds?



OR

c)State and explain the Auger electron spectroscopy.4d)Discuss the basic principle and chemical information from ESCA.4e)Calculate the  $\lambda_{max}$  value using Fiesher Woodward rules.4

1



f) Explain the effect of solvent on various electronic transition.

4

- **2.** a) Explain the following terms:
  - i) Deuterium exchange reaction.
  - ii) Shielding mechanism with suitable example.
  - b) Discuss the 31<sub>P</sub> NMR Spectroscopy in details.

## OR

|    | c)       | Explain Geminal and vicinal coupling with suitable examples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 |
|----|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    | d)       | Explain the hybridization effect on NMR spectroscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 |
|    | e)       | Explain the magnetic Anisotropy effect with example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4 |
|    | f)       | Explain the spin-spin interaction with example.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 |
| 3. | a)<br>b) | A sample of Dacron (Terylene) and a sample of Nylon were hydrolyzed and in each case<br>the single carbozylic acid component was isolated from the reaction mixture. Deduce the<br>structure of these two acidic compounds from their spectral data:<br>From Dacron (Terylene)<br>Molecular formula $C_8H_6O_4$<br>Proton NMR : $\delta 8.2$ (4H, S), 12.5 (1H, Broad singlet),<br>13 <sub>C</sub> NMR : $\delta 130$ (4c, d), 140 (2c, s), 176 (2c, s)<br>From Nylon<br>Molecular formula $C_6H_{10}O_4$<br>Proton NMR : $\delta 1.5$ (4H, distorted triplet),<br>2.3(4H, distorted triplet),<br>13 <sub>C</sub> NMR : $\delta 26$ (2c, t), 37 (2c, t), 182 (2c, s)<br>Discuss the following terms:<br>i) Solvent used in NMR<br>ii) Nuclear overhauser effect (NOE) | 8 |
|    |          | ii) Nuclear överhauser effect (NOE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |
|    |          | OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |
|    | c)       | Explain the application of NMR spectroscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 |
|    | d)       | Explain the INERT technique in brief.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4 |
|    | e)       | Identify the compound with molecular formula $C_3H_7NO$ with shows following data.<br>i) UV : 238 nm $E_{max}$ 10500<br>ii) IR : 3428 (m), 2940 – 2855 (w),<br>1681 (s) and 1452 cm <sup>-1</sup> (w)<br>iii) NMR : 8.13 $\delta$ singlet (1H);<br>2.70 $\delta$ singlet (3H), and<br>1.9 $\delta$ singlet (3H)                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 |

2

8

8

|    | f) | i) Three isomeric dimethyl cyclopropens gives respectively two, three and four NMR signals. Draw a stereoisomeric formula for the isomer giving rise to each number of signals | 4 |
|----|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|    |    | ii) How many NMR signals would you expect from cyclohexane? why?                                                                                                               |   |
| 4. | a) | Discuss the Laue method of x-ray analysis and Bragg's law is used to determine the structure of crystal in x-ray diffraction.                                                  | 8 |
|    | b) | Explain the magnetic scattering and elucidation of structure of magnetically ordered unit cell.                                                                                | 8 |
|    |    | OR                                                                                                                                                                             |   |
|    | c) | Derive the wierl equation of electron diffraction technique.                                                                                                                   | 4 |
|    | d) | How Bragg's x-ray spectrometer method is used in the determination of crystal structure.                                                                                       | 4 |
|    | e) | The glancing angle for the first order x-ray reflection from a given lattice plane is 9.8°. Calculate the glancing angle for the second order reflection from the same plane.  | 4 |
|    | f) | Give the identification of unit cell from the systematic abscence in the diffraction pattern?                                                                                  | 4 |
| 5. | a) | Give the application of U.V. spectroscopy.                                                                                                                                     | 2 |
|    | b) | Draw the diagram of NMR spectrophotometer.                                                                                                                                     | 2 |
|    | c) | State the principle of Photo-electron spectroscopy.                                                                                                                            | 2 |
|    | d) | Explain chemical shift.                                                                                                                                                        | 2 |
|    | e) | How will you differentiate between Propanal and Propanone by using NMR.                                                                                                        | 2 |
|    | f) | Show the total numbers of NMR signals in the following compounds.                                                                                                              | 2 |
|    |    | i) $CH_2$ -CH <sub>3</sub> ii $O$                                                                                                                                              |   |
|    |    | CH <sub>3</sub> Ct                                                                                                                                                             |   |
|    | g) | What is Miller indices.                                                                                                                                                        | 2 |
|    | h) | Give the application of LEED.                                                                                                                                                  | 2 |
|    |    |                                                                                                                                                                                |   |

\*\*\*\*\*\*