S.Y. M.Sc. (Physics) (CBCS Pattern) Fourth Semester CBCS

PSCPHYT15.3 - Core Elective E-2.4 - Atomic and Molecular Physics-II Paper-15

P. Pages: 2 GUG/W/18/11417 Time: Three Hours Max. Marks: 80 1. Either a) Explain the concept of time dependent perturbation theory. 8 Derive an expression for time dependent perturbation coefficient (Cn). Consider an electric field E₀ cos \omega t is affecting on an atom. Estimate an expression for 8 b) Einstein coefficient (B) for an emission rate of stimulated emission. OR State and prove fluctuation dissipation theorem rotational correlation function. 8 e) Obtain an expression for rotational energy levels of diatomic molecule and frequency of f) 8 rotational spectra so that in rotational spectra the lines are equidistance on frequency scale. 2. Either State and Explain the concept of saturated absorption spectroscopy. Show that the ratio of 8 a) the peak cross-section is nearly equal to the ratio of line width. Describe two photon spectroscopy of 1S-2S transition in atomic hydrogen atom. Discuss b) 8 calibration in laser spectroscopy using. Calibration of relative frequency. a) Absolute calibration. b) OR What is photo acoustic spectroscopy? Derive an expression for two photon absorption 8 e) cross-section for photo-acoustic spectroscopy in gaseous medium. Describe the Rosenzweig and greshow theory in details. f) 8 3. Either What are the different types of emission? Explain using Jablonski diagram. Derive an a) 8 expression for quantum yield. Write a note onb) 8 Light detectors. i) Single photon counting technique. ii)

OR

	e)	What is stimulated Raman scattering? Draw the energy level diagram for stimulated Raman scattering.	8
	f)	Describe electromagnetic theory for stimulated Raman spectroscopy. Describe the selection rule.	8
4.	Eithe	or	
	a)	What are the different kind of symmetry operation? Explain these operation for C_{2V} and C_{3V} point groups.	8
	b)	What is matrix isolation? Explain in detail. What are the limitations of matrix representation?	8
		OR	
	e)	Explain group theory in detail. Give the application of group theory to molecular vibrations.	8
	f)	Give matrix representation of symmetry elements of a point group. Explain. i) Reducible ii) Irreducible representations.	8
5.		All questions are compulsory.	
		a) Explain Re-orientational spectroscopy of liquids.	4
		b) Describe experimental methods of saturation spectroscopy in laser.	4
		c) Determine the expression for life time of excited state for time resolved fluorescence.	4
		d) Explain Laser cooling? Give its applications?	4
