M.Sc.-II (Mathematics) (CBCS Pattern) Fourth Semester CBCS PSCMTHT20.3-Optional Paper-XX - Coding Theory

P. Pages: 2 Time: Three Hours			UG/W/18/11405 Max. Marks : 100	
	Not	es: 1. Solve all five questions. 2. All questions carry equal marks.		
		UNIT - I		
1.	a)	Prove that : If x, y, z be words of length n over A. Then i) $0 \le d(x, y) \le n$ ii) $d(x, y) = 0$ if and only if $x = 0$ iii) $d(x, y) = d(y, x)$ iv) $d(x, y) \le d(x, y) + d(y, z)$	10 У	
	b)	Define : i) Distance of a code ii) (n, m, d) - code Find the distance of the ternary code C = {000000, 000111, 111222} OR	10	
	c)	Prove that a code with distance d is exactly (d-1) - error - detecting code.	10	

d) For the ternary code $C = \{00122, 12201, 20110, 22000\}$, use the decoding rule to decode **10** the received word 01122.

UNIT - II

2.	a)	Let V be a vector space over F_q . If	10
		$\dim(V) = k$, then prove that	
		i) V has q^k elements	
		ii) V has $\frac{1}{k!} \prod_{i=0}^{k-1} (q^k - q^i)$ different bases.	

b) If
$$x, y \in F_2^n$$
, then prove that $wt(x+y) = wt(x) + wt(y) - 2wt(x*y)$. 10

OR

- c) Let S be a subset of F_q^n , then prove that $\dim(\langle S \rangle) + (S^{\perp}) = n$. 10
- d) Show that Let C be an [n, k] linear code over F_q , with generator matrix G. Then VE **10** F_q^n belong to C^{\perp} if and only if V is orthogonal to very row of G. In particular, given an (n–k) xn matrix H is a parity-check matrix for C if and only if the rows of H are linearly independent and HG^T = 0.

UNIT - III

- 3. 10 a) Show that - let I be a nonzero ideal in $F_{q}[x]/(x^{n}-1)$ and let g(x) be a non zero monic polynomial of the least degree in I. Then g(x) is a generator of I and divides $x^{n} - 1$.
 - b) Prove that -Each monic divisor of $x^n - 1$ is the generator polynomial of some cyclic code in F_q^n .

OR

- Let g(x) be the generator polynomial of a q-ary[n, k] cyclic code C. c) Put $h(x) = (x^n - 1)/g(x)$. Then show that $h_0^{-1}h_R(x)$ is the generator polynomial of C^{\perp} , where h_0 is the constant term of h(x).
- Let $H = (I_{n-k} | A)$ be a parity-check matrix of a q-ary cyclic code C. let g(x) be the 10 d) generator polynomial of C. Then prove that the syndrome of a vector $W \in F_q^n$ is equal to $(W(x) \pmod{g(x)})$.

UNIT - IV

4.	a)	Prove that Reed-Solomon codes are MCD.		10	
	b)			 10	

Prove that - A narrow - sense binary BCH code of length $n = 2^m - 1$ as designed distance 10 D) $\delta = 2t + 1$ has dimension at least $n - m(\delta - 1)/2$.

OR

	c)	Show that - A BCH code with designed	d dista	nce δ has minimum distance at least δ .	10	
	d)	Prove that the polynomials $g_Q(x)$ and $g_N(x)$ belong to $F_{\ell}(x)$.				
5.	a)	Define : i) Code Alphabet iii) q-ary block code v) Size of code	ii) iv)	q-ary word codeword	5	
	b)	For the binary linear code Findi) The number of bases for C.iii) All generator matrices of C.	ii)	List all the bases of C.	5	
	c)	List all the monic divisor of $x^6 - 1$.			5	
	d)	Define : i) Primitive BCH code.	ii)	Narrow - sense code.	5	

10

10