M.Sc.(Mathematics) (CBCS Pattern) Third Semester **PSCMTHT15-5 - (Optional) Paper-XV: Fuzzy Mathematics-I**

P. Pages: 3

Time : Three Hours

Max. Marks : 100

10

10

10

GUG/W/18/11290

Notes : 1. Solve all **five** questions. 2. All questions carry equal marks.

UNIT - I

1. a) Prove that a fuzzy set A on R is convex if and only if $A(\lambda x_1 + (1 - \lambda)x_2) \ge \min[A(x_1), A(x_2)]$.

- b) Let A, B $\in \mathcal{F}$ (X). Then prove that for all $\alpha, \beta \in [0, 1]$.
 - i) $\alpha(A \cap B) = \alpha A \cap \alpha B$ and $\alpha(A \cup B) = \alpha A \cup \alpha B$ ii) $\alpha(\overline{A}) = (1-\alpha) + \overline{A}$.

OR

- c) Let $A_i \in \mathcal{F}(X)$ for all $i \in I$, where I is an index set. Then prove that $\bigcup_{i \in I}^{\alpha +} A_i = {}^{\alpha +} \left(\bigcup_{i \in I} A_i \right) \text{ and } \bigcap_{i \in I}^{\alpha +} A_i \subseteq {}^{\alpha +} \left(\bigcap_{i \in I} A_i \right)$
- d) Let C be a function from [0, 1] to [0, 1]. Then prove that C is a fuzzy complement iff there **10** exists a continuous function f from [0, 1] to R such that f(1) = 0, f is strictly decreasing and $c(a) = f^{-1}(f(0) f(a))$ for all $a \in [0, 1]$.

UNIT - II

2. a) Let MIN and MAX be binary operations on R defined by. $MIN(A, B)(z) = \sup_{z=min(x, y)} \min [A(x), B(y)]$ and $MAX(A, B)(z) = \sup_{z=max(x, y)} \min [A(x), B(y)]$ for all $z \in R$ respectively. Then prove that for any A, B, C $\in R$. MIN[A, MAX (B, C)] = MAX [MIN (A, B), MIN(A, C)].

b) Let $A \in \mathcal{F}(R)$ then prove that A is fuzzy number iff there exists a closed interval $[a, b] \neq \phi$ 10 such that.

$$A(x) = \begin{cases} 1 & \text{for} \quad x \in [a, b] \\ \ell(x) & \text{for} \quad x \in (-\infty, a) \\ r(x) & \text{for} \quad x \in (b, \infty) \end{cases}$$

where ℓ is a function from $(-\infty, a)$ to [0, 1] that is monotonic increasing, continuous from the right, and such that $\ell(x) = 0$ for $x \in (-\infty, w_1)$; r is a function from (b, ∞) to [0, 1] that is monotonic decreasing, continuous from the left, and such that r(x) = 0 for $x \in (w_2, \infty)$.

1

OR

c) Consider two triangular-shape fuzzy numbers A and B defined as:

$$A(x) = \begin{cases} 0 & \text{for } x \le -1 \text{ and } x > 3 \\ (x+1)/2 & \text{for } -1 < x \le 1 \\ (3-x)/2 & \text{for } 1 < x \le 3 \end{cases}$$

$$B(x) = \begin{cases} 0 & \text{for } x \le 1 \text{ and } x > 5 \\ (x-1)/2 & \text{for } 1 < x \le 3 \\ (5-x)/2 & \text{for } 3 < x \le 5 \end{cases}$$
and their α -cuts are
$${}^{\alpha}A = [2\alpha - 1, 3 - 2\alpha]$$

$${}^{\alpha}B = [2\alpha + 1, 5 - 2\alpha]$$
then find the values of
$${}^{\alpha}(A+B), {}^{\alpha}(A-B), {}^{\alpha}(A \cdot B), {}^{\alpha}(A/B), A+B(x), (A-B)(x), (A \cdot B)(x) \text{ and } (A/B) x.$$

d) Find the solution for the equation $A \cdot X = B$ where A and B are triangular-shape fuzzy 10 numbers given by.

$$A = \begin{cases} 0 & \text{for } x \le 3 \text{ and } x > 5 \\ x - 3 & \text{for } 3 < x \le 4 \\ 5 - x & \text{for } 4 < x \le 5 \end{cases}$$
$$B = \begin{cases} 0 & \text{for } x \le 12 \& x > 32 \\ (x - 12)/8 & \text{for } 12 < x \le 20 \\ (32 - x)/12 & \text{for } 20 < x \le 32 \end{cases}$$

UNIT - III

3. a) Determine the transitive max-min closure $R_T(x, X)$ for a fuzzy relation R (x, X) defined 10 by the membership matrix.

$$\mathbf{R} = \begin{bmatrix} .7 & .5 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & .4 & 0 & 0 \\ 0 & 0 & .8 & 0 \end{bmatrix}$$

b) For any fuzzy relation R on X². Prove that the fuzzy relation $R_{T(i)} = \bigcup_{n=1}^{\infty} R^{(n)}$ is the 10 i-transitive closure of R.

OR

c) Prove that for any a, a_j , b, $d \in [0, 1]$, where j takes values from an index set J, operation 10 w_i has the following properties.

i)
$$i(a,b) \le d \text{ iff } w_i(a,d) \ge b$$

ii)
$$w_i[i(a, b), d] = w_i[a, w_i(b, d)]$$

iii) $w_i \begin{bmatrix} \sup_{j \in J} a_j, b \end{bmatrix} = \inf_{j \in J} w_i (a_j, b).$

d) Let R be a reflexive fuzzy relation on X^2 , where $|X| = n \ge 2$. Then prove that $R_{T(i)} = R^{n-1}$ **10**

UNIT - IV

4. a)

Let
$$Q = \begin{bmatrix} .1 & .4 & .5 & .1 \\ .9 & .7 & .2 & 0 \\ .8 & 1 & .5 & 0 \\ .1 & .3 & .6 & 0 \end{bmatrix}$$
 and $r = \begin{bmatrix} .8 & .7 & .5 & 0 \end{bmatrix}$, determine all solutions of $p \cdot Q = r$,
where

10

5

5

$$p = \left[p_j \big/ j \in J \right], Q = \left[q_{jk} \big/ j \in J, k \in K \right] r = \left[r_k \big/ k \in K \right]$$

b)

Let the t-norm i employed in $P \stackrel{i}{o} Q = R$ be the product and let $Q = \begin{bmatrix} .1 \\ .2 \\ .3 \end{bmatrix}$ and $R = \begin{bmatrix} .12 \\ .18 \\ .27 \end{bmatrix}$ then find the greatest solution P.

OR

c) If $S(Q, R) \neq \phi$ for $P_o^i Q = R_1$ then prove that $P = (Q_o^{Wi} R^{-1})^{-1}$ is the greatest member of S(Q, R).

d) Prove that
$$P = \left(Q_{o}^{Wi} R^{-1}\right)^{-1}$$
 is the greatest approximation of $P_{o}^{i} Q = R$.

5. a) For any
$$A \in \mathcal{F}(X)$$
 then prove that $\alpha_A = \bigcap_{\beta < \alpha} {}^{\beta}A = \bigcap_{\beta < \alpha} {}^{\beta+}A$. 5

- b) Let MIN be binary operation on R defined by $MIN(A, B)(z) = \sup_{z=min(x,y)}^{sup} \min [A(x), B(y)]$ then for any Z, A, B, C \in R prove that MIN[MIN(A, B), C] = MIN[A, MIN(B, C)].
- c) Write the basic properties of the sup-i composition under the standard fuzzy union and 5 intersection.
- d) Explain an approximate solutions of fuzzy relations.
