M.Sc.(Mathematics) (CBCS Pattern) Third Semester **PSCMTHT14-3 - Paper-XIV (Optional) : Graph Theory**

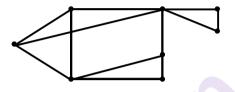
	Pages : ne : Th	2 ree Hours $\star 3 3 8 7 \star$	GUG/W/18/11 Max. Marks :	
	Note	 s: 1. Solve all five questions. 2. All questions carry equal marks. UNIT - I 		
1.	a)	Prove that if G be a non-empty graph with at least two vertices. Then G is only if it has no odd cycles.	s bipartite if and	10
	b)	Prove that in a graph G there is an even number of odd vertices.		10
		OR		
	c)	Prove that for a tree T with n-vertices then it has precisely n-1 edges.		10
	d)	Prove that A graph G is connected if and only if it has a spanning tree.		10
		UNIT - II		
2.	a)	In Dijkstra's algorithm, if at some stage $\lambda(v)$ is finite for the vertex V the there is a path from s to v whose length is $\lambda(v)$.	en. Prove that	10
	b)	Let G be a graph with n vertices, where $n \ge 2$. then prove that G has at leas which are not cut vertices.	ast two vertices	10
		OR		
	c)	Prove that: A connected graph G is Euler if and only if the degree of ever	y vertex is even.	10
	d)	Prove that Fleury's algorithm produces an Euler tour in an Euler graph G.		10
		UNIT - III		
3.	a)	Let G be a plane graph with n vertices, e edges, f faces and k connected c prove that $n-e + f = k + 1$.	omponents, then	10
	b)	State and prove Euler's formula.		10
		OR		
	c)	Show that if a planar graph G of order n and size m has r regions and k concerned n - $m + r = k + 1$.	omponents, then	10
	d)	Let G be a connected plane graph with n vertices, e edges and f faces. I denote the number of vertices, edges and faces respectively of G* then pr $n^* = f$, $e^* = e$, and $f^* = n$		10

UNIT - IV

- a) Prove that if D be a weakly connected digraph with at least two vertices. Then D has a 10 directed Euler trail if and only if D has two vertices u and v such that od(u) = id(u) + 1 and id (v) = od(v) + 1 and, for all other vertices W of D, od(w) = id(w), furthermore, in this case the trail begins at u and ends at v.
 - b) Prove that : every tournament T has a directed Hamiltonian path.

OR

c) Find the orientation of the graph.



- d) Let u and v be two distinct vertices of the graph G. Prove that
 - i) A set S of vertices of G is u-v separating if and only if every u-v path has at least one internal vertex belonging to S.
 - ii) A set F of edges of G is u-v separating if and only if every u-v path has at least one edge belonging to F.
- 5. a) Let G be a graph with n vertices and e edges and let m be the smallest positive integer such 5 that m Z $\frac{2e}{n}$ -Prove that G has a Vertex of degree at least m.
 - b) Write down the steps involved in Dijkstra's algorithm.
 - c) Let G_1 and G_2 be two plane graphs which are both redrawing's of the same planar graph 5 G. Then prove that $f(G_1) = f(G_2)$.
 - d) Prove that a simple graph G is Hamiltonian if and only if its closure C(G) is Hamiltonian. 5

GUG/W/18/11284

10

10

5

10