M.Sc.(Physics) (CBCS Pattern) Second Semester CBCS PSCPHYT07 - Paper-VII (Core-VII): Classical Mechanics

P. Pag Time		2 ee Hours $* 3 3 2 5 *$	GUG/W/18/11222 Max. Marks : 80
1.		Either:	
	a)	What are constraints? Give detailed classification with suitable examples.	8
	b)	Derive Lagrange's equation of motion for the system for which the forces ar potential function V.	e derivable from 8
		OR	
	e)	Discuss D'Alemberts Principle.	8
	f)	Discuss variational principle.	8
2.		Either:	
	a)	Discuss Routh's procedure for cyclic co-ordinates.	8
	b)	Explain Hamilton - Jacobi theory. OR	8
	e)	Using Hamilton's equation of motion show that the Hamiltonian	8
		$H = \frac{P^2}{2m}e^{-rt} + \frac{1}{2}mW^2 x^2 e^{rt}$ Leads to the equation of motion of a damped harmonic oscillator.	
	f)	Define Poisson bracket and state the different properties of Poisson-bracket that $[x, y+z] = [x, y] + [x, z]$.	t. Further show 8
3.		Either:	
	a)	Establish a relation between scattering angles in laboratory system and C.M.	A. System. 6
	b)	Show that the total energy of a particle under the action of central force is a find expressions of r (t) and θ (t). OR	constant. Also 10
	e)	Assuming the motion of a particle under the action of central force show the	nat 8
	,	$\frac{1}{2}\mathrm{m}\dot{r}^2 + \frac{\ell^2}{2\mathrm{m}r^2} + \mathrm{v}(r) = \mathrm{Constant.}$	
	f)	Discuss classification of orbits for inverse square central forces.	8

4.		Either:	
	a)	State and prove Euler's Theorem.	8
	b)	Explain moment of inertia tensor.	8
		OR	
	e)	Discuss eigen values and principal axis transformation.	8
	f)	Explain non-inertial frames and Pseudo forces.	8
5.		Answer all the followings -	
		a) Explain phase space dynamics.	4
		b) Explain in brief canonical transformations.	4

- c) Write a short note on Rutherford Scattering.
 - d) Explain Rigid body dynamics.

4

4