M.SC. (Computer Science) – I (CBCS Pattern) Second Semester CBCS PSCSCT05 - Theory of Computation & System Programming Paper – I

P. Pages : 2

Time : Three Hours

- Notes: 1. All questions are compulsory and carry equal marks
 - 2. Draw neat and labeled diagram and use supporting data whenever necessary.
 - 3. Avoid vague answer and write specific answer selected.

1. Either :

a) Construct DFA'S equivalent to the NFA'S $(\{p,q,r,s\},\{0,1\},\delta 1,p,\{s\}),$

States	0	1	
р	p, q	р	
q	r	r	
r	S		
S	S	S	

Fig. Transition Table for $\delta 1$

- b) Show that following sets are not a Regular sets.
 - i) $L = \left\{ a^n b^n | n > 0 \right\}$ is not regular set.
 - ii) $L = \left\{ a^{2n} | n \ge 1 \right\}$ is not regular set.

OR

c) Convert the grammar with the following productions into CNF. $S \rightarrow bA/aB$

$$A \rightarrow bAA/aS/a$$

 $B \rightarrow aBB/bS/b$

1

d) Consider the grammar, $S \rightarrow aAs|a$ $A \rightarrow SbA|ba$ for the string aabbaa find :

- i) Leftmost derivation. ii) Rightmost derivation.
- **2.** Either :
 - a) Design a PDA for accepting a Language.
 - $i) \qquad L = \left\{ 0^n 1^n \left| n \ge 1 \right\} \qquad \qquad ii) \qquad L = \left\{ a^n b^{2n} \left| n \ge 1 \right\} \right.$

8

GUG/W/18/11187

Max. Marks: 80

8

8

8

b)	Prove that following	Languages are not CFL'S	
/	0		

i)
$$L = \left\{ a^{i}b^{i}c^{i} | i \ge 1 \right\}$$
 ii) $L = \left\{ a^{i} | i \text{ is prime} \right\}$

OR

	c)	Design a TM to recognize the language. $L = \{0^n 1^n n \ge 1\}$	8
	d)	Design a TM for addition of two positive 'x' and 'y' compute ' $x + y$ '.	8
3.	Eithe	r:	
	a)	What is device driver's? Explain Role of Device Driver's.	8
	b)	Explain Building & Running modules in details?	8
		OR	
	c)	Explain Interaction & Shutdown in detail.	8
	d)	Explain the following terms.	8
		i) Security Issues.	
		ii) Module Parameters.	
4.	Eithe	er:	
	a)	What is Registers? Explain general Purpose Registers in detail.	8
	b)	Explain the following terms.	8
		i) Memory Segmentation and Address computation.	
		ii) Addressing modes.	
		OR	
	c)	What is Instruction? Explain different types of Instruction.	8
	d)	What is loader? Explain Loading Schemes in detail.	8
5.		Solve all the question.	
	a)	Explain the applications of finite Automata.	4
	b)	Explain the Chomsky Hierarchy.	4
	c)	Explain Splitting the kernel.	4
	d)	Explain Near & far procedures.	4

8