M.Sc. (Physics) (CBCS Pattern) First Semester **PSCPHYT02 - Core-II - Complex Analysis and Numerical Methods Paper-II**

	ages : e : Th		/ 18/11180 Marks : 80
1.	a)	Either Find the modulus and argument of the following complex numbers: i) $\frac{1+2i}{1-(1-i)^2}$ ii) $\frac{(1+i)^2}{1-i}$	8
	b)	The centre of a regular hexagon is at the origin and one vertex is given by $\sqrt{3}$ + i on Argand diagram. Find the complex number represented by the other vertices.	the 8
		OR	
	e)	State and prove Cauchy integral formula.	8
	f)	Test the analyticity of the function w = sin z and hence derive that : $\frac{d}{dz}(\sin z) = \cos z$	8
2.		Either	
	a)	Determine the poles and the residue at each pole of the function: i) $f(z) = \frac{z^2}{(z-1)^2(z+2)}$ ii) $f(z) = \cot z$	8
	b)	If f (z) is of the form $f(z) = \frac{\phi(z)}{\Psi(z)}$ Where, $\Psi(a) = 0$ but $\phi(a) \neq 0$ then prove that Res (at $z = a$) = $\frac{\phi(a)}{\Psi'(a)}$	8
		OR	
	e)	How one can find the residue –	8
		i) At simple pole ii) At pole of order n	
	f)	Evaluate the following integral using residue theorem:	8
		i) $\int_{C} \frac{1+z}{z(2-z)} dz$, Where C is the circle $ z =1$	

ii)
$$\int_{c} \frac{z^2 e^{zt}}{z^2 + 1} dz$$
, Where C:|Z|=2

1

3.	a)	Either Find the real root of the following equation, correct to three decimal places, using Newton – Raphson method: $x^3 - 2x - 5 = 0$	8
	b)	Obtain the secant general formula for finding the root of the equation.	8
		OR	
	e)	The tables of values are:x2.53.03.54.04.5y(x)9.7512.4515.7019.5223.75	8
		Using Newton's interpolation formula, Find y(3.58) and y(4.25)	
4.	f)	Define finite difference. Explain the different types of finite difference.	8
		Either	
	a)	Explain Simpson's $\frac{1}{3}^{rd}$ rule and obtain the formula for it.	8
	b)	Obtain the general formula for trapezoidal rule and show it graphically.	8
		OR	
	e)	Using Euler's method, Find an approximate value of y corresponding to $x = 2$, given that	8
		$\frac{dy}{dx} = x + 2y$ and $y = 1$ when $x = 1$.	
	f)	Deduce the Formula for linear least squares.	8
5.		Answer all the following:	
	a)	Define complex number. Show that the sum and product of complex number and its conjugate complex are both real.	4
	b)	Explain branch points.	4
	c)	Explain Bisection method.	4
	d)	Derive the formula for Lagrange's interpolation formula.	4
